Suppr超能文献

LFM-Pro:一种用于检测蛋白质中重要局部结构位点的工具。

LFM-Pro: a tool for detecting significant local structural sites in proteins.

作者信息

Sacan Ahmet, Ozturk Ozgur, Ferhatosmanoglu Hakan, Wang Yusu

机构信息

Department of Computer Engineering, Middle East Technical University, Ankara, Turkey.

出版信息

Bioinformatics. 2007 Mar 15;23(6):709-16. doi: 10.1093/bioinformatics/btl685. Epub 2007 Jan 19.

Abstract

MOTIVATION

The rapidly growing protein structure repositories have opened up new opportunities for discovery and analysis of functional and evolutionary relationships among proteins. Detecting conserved structural sites that are unique to a protein family is of great value in identification of functionally important atoms and residues. Currently available methods are computationally expensive and fail to detect biologically significant local features.

RESULTS

We propose Local Feature Mining in Proteins (LFM-Pro) as a framework for automatically discovering family-specific local sites and the features associated with these sites. Our method uses the distance field to backbone atoms to detect geometrically significant structural centers of the protein. A feature vector is generated from the geometrical and biochemical environment around these centers. These features are then scored using a statistical measure, for their ability to distinguish a family of proteins from a background set of unrelated proteins, and successful features are combined into a representative set for the protein family. The utility and success of LFM-Pro are demonstrated on trypsin-like serine proteases family of proteins and on a challenging classification dataset via comparison with DALI. The results verify that our method is successful both in identifying the distinctive sites of a given family of proteins, and in classifying proteins using the extracted features.

AVAILABILITY

The software and the datasets are freely available for academic research use at http://bioinfo.ceng.metu.edu.tr/Pub/LFMPro.

摘要

动机

快速增长的蛋白质结构数据库为发现和分析蛋白质之间的功能及进化关系带来了新机遇。检测蛋白质家族特有的保守结构位点对于识别功能重要的原子和残基具有重要价值。目前可用的方法计算成本高昂,且无法检测到具有生物学意义的局部特征。

结果

我们提出蛋白质局部特征挖掘(LFM-Pro)作为自动发现家族特异性局部位点以及与这些位点相关特征的框架。我们的方法利用到主链原子的距离场来检测蛋白质几何上显著的结构中心。从这些中心周围的几何和生化环境生成特征向量。然后使用统计量对这些特征区分蛋白质家族与不相关蛋白质背景集的能力进行评分,成功的特征被组合成蛋白质家族的代表性集合。通过与DALI比较,在胰蛋白酶样丝氨酸蛋白酶家族蛋白质以及具有挑战性的分类数据集上证明了LFM-Pro的实用性和成功性。结果证实我们的方法在识别给定蛋白质家族的独特位点以及使用提取的特征对蛋白质进行分类方面均取得成功。

可用性

软件和数据集可在http://bioinfo.ceng.metu.edu.tr/Pub/LFMPro免费获取用于学术研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验