Suppr超能文献

Anti-inflammatory effects of isoflavones are dependent on flow and human endothelial cell PPARgamma.

作者信息

Chacko Balu K, Chandler Robert T, D'Alessandro Tracy L, Mundhekar Ameya, Khoo Nicholas K H, Botting Nigel, Barnes Stephen, Patel Rakesh P

机构信息

Department of Pathology, Purdue-UAB Botanical Center, University of Alabama, Birmingham, AL 35294, USA.

出版信息

J Nutr. 2007 Feb;137(2):351-6. doi: 10.1093/jn/137.2.351.

Abstract

The mechanisms by which isoflavones protect against inflammatory vascular disease remain unclear. Our previous observations suggest that one mechanism involves inhibition of monocyte-endothelial cell interactions in a process that is absolutely dependent on flow. The molecular mechanisms involved and the effects of structurally distinct isoflavones on this process are not known and are investigated herein. Using static and flow-dependent monocyte adhesion assays, our data show that exposure of endothelial cells to biologically relevant concentrations of isoflavones inhibits subsequent TNF-alpha induced monocyte adhesion only during flow. This inhibition involved activating endothelial PPARgamma by stimulating promoter sequences containing the PPARgamma response element by isoflavones and attenuating antiadhesive effects by siRNA targeting of PPARgamma. A comparison of structurally distinct isoflavones suggested a critical role for the A-ring. Using chlorinated derivatives of daidzein, a key structural requirement for PPARgamma agonist activity appears to be the presence of the 7-OH group and the lack of chlorine at the 6- or 8-positions in the A-ring. Collectively, these data support 1) a novel flow-dependent anti-inflammatory mechanism for PPARgamma ligands in vascular endothelial cells and 2) exemplify the current concepts of nutrients modulating disease via regulating specific cell signaling pathways.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验