Centre de Résonance Magnétique Biologique et Médicale, UMR Centre National de la Recherche Scientifique 6612, Université de la Méditerranée, Faculté de Médecine, Marseille, France.
PLoS One. 2007 Jan 17;2(1):e157. doi: 10.1371/journal.pone.0000157.
Rett syndrome (RS) is the leading cause of profound mental retardation of genetic origin in girls. Since RS is mostly caused by mutations in the MECP2 gene, transgenic animal models such as the Mecp2-deleted ("Mecp2-null") mouse have been employed to study neurological symptoms and brain function. However, an interdisciplinary approach drawing from chemistry, biology and neuroscience is needed to elucidate the mechanistic links between the genotype and phenotype of this genetic disorder.
METHODOLOGY/PRINCIPAL FINDINGS: We performed, for the first time, a metabolomic study of brain extracts from Mecp2-null mice by using high-resolution magnetic resonance spectroscopy. A large number of individual water-soluble metabolites and phospholipids were quantified without prior selection for specific metabolic pathways. Results were interpreted in terms of Mecp2 gene deletion, brain cell function and brain morphology. This approach provided a "metabolic window" to brain characteristics in Mecp2-null mice (n = 4), revealing (i) the first metabolic evidence of astrocyte involvement in RS (decreased levels of the astrocyte marker, myo-inositol, vs. wild-type mice; p = 0.034); (ii) reduced choline phospholipid turnover in Mecp2-null vs. wild-type mice, implying a diminished potential of cells to grow, paralleled by globally reduced brain size and perturbed osmoregulation; (iii) alterations of the platelet activating factor (PAF) cycle in Mecp2-null mouse brains, where PAF is a bioactive lipid acting on neuronal growth, glutamate exocytosis and other processes; and (iv) changes in glutamine/glutamate ratios (p = 0.034) in Mecp2-null mouse brains potentially indicating altered neurotransmitter recycling.
CONCLUSIONS/SIGNIFICANCE: This study establishes, for the first time, detailed metabolic fingerprints of perturbed brain growth, osmoregulation and neurotransmission in a mouse model of Rett syndrome. Combined with morphological and neurological findings, these results are crucial elements in providing mechanistic links between genotype and phenotype of Rett syndrome. Ultimately, this information can be used to identify novel molecular targets for pharmacological RS treatment.
雷特综合征(RS)是女孩中由遗传原因引起的最常见的严重智力障碍疾病。由于 RS 主要由 MECP2 基因突变引起,因此已采用 Mecp2 缺失(“Mecp2-null”)小鼠等转基因动物模型来研究神经症状和大脑功能。然而,需要从化学、生物学和神经科学等多个学科领域入手,阐明这种遗传疾病的基因型和表型之间的机制联系。
方法/主要发现:我们首次通过高分辨率磁共振波谱对 Mecp2-null 小鼠的脑提取物进行了代谢组学研究。定量分析了大量的单个水溶性代谢物和磷脂,而无需预先选择特定的代谢途径。结果根据 Mecp2 基因缺失、脑细胞功能和脑形态进行了解释。这种方法为 Mecp2-null 小鼠的脑特征提供了一个“代谢窗口”(n = 4),揭示了(i)星形胶质细胞参与 RS 的第一个代谢证据(星形胶质细胞标志物肌醇水平降低,与野生型小鼠相比,p = 0.034);(ii)Mecp2-null 与野生型小鼠相比,胆碱磷脂周转率降低,意味着细胞生长潜力降低,同时大脑整体缩小,渗透调节受到干扰;(iii)Mecp2-null 小鼠大脑中血小板激活因子(PAF)循环改变,其中 PAF 是一种作用于神经元生长、谷氨酸外排和其他过程的生物活性脂质;(iv)Mecp2-null 小鼠脑内谷氨酰胺/谷氨酸比值变化(p = 0.034),可能表明神经递质再循环改变。
结论/意义:本研究首次建立了 Mecp2-null 小鼠模型中受干扰的脑生长、渗透调节和神经传递的详细代谢特征。结合形态学和神经学发现,这些结果为雷特综合征的基因型和表型之间提供了机制联系的关键要素。最终,这些信息可用于确定治疗 RS 的新型分子靶标。