Suppr超能文献

牛细胞色素c氧化酶亚基I中色氨酸334的氧化涉及自由基迁移。

Tryptophan 334 oxidation in bovine cytochrome c oxidase subunit I involves free radical migration.

作者信息

Lemma-Gray Patrizia, Weintraub Susan T, Carroll Christopher A, Musatov Andrej, Robinson Neal C

机构信息

Department of Biochemistry, The University of Texas Health Science Center, MC 7760, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.

出版信息

FEBS Lett. 2007 Feb 6;581(3):437-42. doi: 10.1016/j.febslet.2006.12.054. Epub 2007 Jan 12.

Abstract

A single tryptophan (W(334(I))) within the mitochondrial-encoded core subunits of cytochrome c oxidase (CcO) is selectively oxidized when hydrogen peroxide reacts with the binuclear center. W(334(I)) is converted to hydroxytryptophan as identified by reversed-phase HPLC-electrospray ionization tandem mass spectrometry analysis of peptides derived from the three SDS-PAGE purified subunits. Total sequence coverage of subunits I, II and III was limited to 84%, 66% and 54%, respectively. W(334(I)) is located on the surface of CcO at the membrane interface. Two other surface tryptophans within nuclear-encoded subunits, W(48(IV)) and W(19(VIIc)), are also oxidized when hydrogen peroxide reacts with the binuclear center (Musatov et al. (2004) Biochemistry 43, 1003-1009). Two aromatic-rich networks of amino acids were identified that link the binuclear center to the three oxidized tryptophans. We propose the following mechanism to explain these results. Electron transfer through the aromatic networks moves the free radicals generated at the binuclear center to the surface-exposed tryptophans, where they produce hydroxytryptophan.

摘要

当过氧化氢与细胞色素c氧化酶(CcO)的双核中心反应时,线粒体编码的细胞色素c氧化酶核心亚基中的单个色氨酸(W(334(I)))会被选择性氧化。通过对从SDS-PAGE纯化的三个亚基衍生的肽段进行反相高效液相色谱-电喷雾电离串联质谱分析,确定W(334(I))转化为羟基色氨酸。亚基I、II和III的总序列覆盖率分别限于84%、66%和54%。W(334(I))位于CcO膜界面处的表面。当过氧化氢与双核中心反应时,核编码亚基中的另外两个表面色氨酸W(48(IV))和W(19(VIIc))也会被氧化(Musatov等人,《生物化学》,2004年,第43卷,第1003 - 1009页)。鉴定出两个富含芳香族氨基酸的网络,它们将双核中心与三个被氧化的色氨酸相连。我们提出以下机制来解释这些结果。通过芳香族网络的电子转移将在双核中心产生的自由基转移到表面暴露的色氨酸处,在那里它们产生羟基色氨酸。

相似文献

1
Tryptophan 334 oxidation in bovine cytochrome c oxidase subunit I involves free radical migration.
FEBS Lett. 2007 Feb 6;581(3):437-42. doi: 10.1016/j.febslet.2006.12.054. Epub 2007 Jan 12.
4
Photolabeling of cardiolipin binding subunits within bovine heart cytochrome c oxidase.
Biochemistry. 2006 Jan 24;45(3):746-54. doi: 10.1021/bi050870z.
6
Redox equilibration after one-electron reduction of cytochrome c oxidase: radical formation and a possible hydrogen relay mechanism.
Arch Biochem Biophys. 2014 Jul 15;554:36-43. doi: 10.1016/j.abb.2014.04.015. Epub 2014 May 5.
7
Contribution of peroxidized cardiolipin to inactivation of bovine heart cytochrome c oxidase.
Free Radic Biol Med. 2006 Jul 15;41(2):238-46. doi: 10.1016/j.freeradbiomed.2006.03.018. Epub 2006 Apr 1.
9
Implications of ligand binding studies for the catalytic mechanism of cytochrome c oxidase.
Biochim Biophys Acta. 2004 Apr 12;1655(1-3):298-305. doi: 10.1016/j.bbabio.2003.07.008.

引用本文的文献

1
Radical in the Peroxide-Produced F-Type Ferryl Form of Bovine Cytochrome Oxidase.
Int J Mol Sci. 2022 Oct 20;23(20):12580. doi: 10.3390/ijms232012580.
2
The Impact of Oxidative Stress on Ribosomes: From Injury to Regulation.
Cells. 2019 Nov 2;8(11):1379. doi: 10.3390/cells8111379.
3
Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications.
J Am Soc Mass Spectrom. 2017 Sep;28(9):1775-1786. doi: 10.1007/s13361-017-1676-1. Epub 2017 May 17.
4
How hydrogen peroxide is metabolized by oxidized cytochrome c oxidase.
Biochemistry. 2014 Jun 10;53(22):3564-75. doi: 10.1021/bi401078b. Epub 2014 May 30.
5
Cardiovascular redox and ox stress proteomics.
Antioxid Redox Signal. 2012 Dec 1;17(11):1528-59. doi: 10.1089/ars.2012.4706. Epub 2012 Aug 10.
7
Ferricytochrome c protects mitochondrial cytochrome c oxidase against hydrogen peroxide-induced oxidative damage.
Free Radic Biol Med. 2010 Nov 30;49(10):1574-81. doi: 10.1016/j.freeradbiomed.2010.08.019. Epub 2010 Aug 27.
9
Peroxide-induced radical formation at TYR385 and TYR504 in human PGHS-1.
J Inorg Biochem. 2009 Jun;103(6):912-22. doi: 10.1016/j.jinorgbio.2009.04.002. Epub 2009 Apr 17.

本文引用的文献

1
Transmembrane proton translocation by cytochrome c oxidase.
Biochim Biophys Acta. 2006 Aug;1757(8):1052-63. doi: 10.1016/j.bbabio.2006.05.020. Epub 2006 May 19.
2
The role of tryptophan 272 in the Paracoccus denitrificans cytochrome c oxidase.
FEBS Lett. 2006 Feb 20;580(5):1345-9. doi: 10.1016/j.febslet.2006.01.054. Epub 2006 Jan 26.
3
Photolabeling of cardiolipin binding subunits within bovine heart cytochrome c oxidase.
Biochemistry. 2006 Jan 24;45(3):746-54. doi: 10.1021/bi050870z.
9
The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15304-9. doi: 10.1073/pnas.2635097100. Epub 2003 Dec 12.
10
The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species.
J Bioenerg Biomembr. 2000 Apr;32(2):153-62. doi: 10.1023/a:1005507913372.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验