Jiang Shujuan, Guo Yihang, Wang Changhua, Qu Xuesong, Li Li
Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China.
J Colloid Interface Sci. 2007 Apr 1;308(1):208-15. doi: 10.1016/j.jcis.2006.12.009. Epub 2007 Jan 22.
Porous polyoxometalate-tantalum pentoxide (POM/Ta(2)O(5), POM=H(3)PW(12)O(40) and H(6)P(2)W(18)O(62)) nanocomposites with different Keggin or Dawson unit loading levels (5.6-15.3%) were successfully prepared via hydrolysis of TaCl(5) in the presence of POM without the addition of any structure-directing reagent. Several characterization techniques, inductively coupled plasma atomic emission spectroscopy (ICP-AES), UV-vis diffuse reflectance spectroscopy (UV-vis/DRS), Fourier transform infrared (FT-IR), (31)P magic-angle spinning (MAS) NMR, field emission scanning electron microscopy (FESEM), and nitrogen adsorption/desorption analysis were combined to confirm the structure integrity of the Keggen or Dawson unit in as-prepared composites and to investigate the optical absorption properties, morphology, and surface textural properties of the composites. The enhanced photocatalytic activity of the composites compared with that of solitary POM units or Ta(2)O(5) was evaluated through decomposition of salicylic acid (SA) and rhodamine B (RB) under visible-light excitation. The large BET surface area (129.7-188.8 m(2) g(-1)) and porous structure, small particle size (20-25 nm), homogeneous dispersion of the POM unit within Ta(2)O(5) framework, decreased bandgap energy, and strong electron acceptance ability of POM can explain this high photocatalytic activity of the composites.
通过在不添加任何结构导向剂的情况下,在多金属氧酸盐(POM)存在下使五氯化钽水解,成功制备了具有不同Keggin或Dawson单元负载水平(5.6 - 15.3%)的多孔多金属氧酸盐 - 五氧化二钽(POM/Ta₂O₅,POM = H₃PW₁₂O₄₀和H₆P₂W₁₈O₆₂)纳米复合材料。结合多种表征技术,包括电感耦合等离子体原子发射光谱(ICP - AES)、紫外 - 可见漫反射光谱(UV - vis/DRS)、傅里叶变换红外光谱(FT - IR)、³¹P魔角旋转核磁共振(³¹P MAS NMR)、场发射扫描电子显微镜(FESEM)和氮吸附/脱附分析,以确认所制备复合材料中Keggen或Dawson单元的结构完整性,并研究复合材料的光吸收特性、形态和表面纹理特性。通过在可见光激发下分解水杨酸(SA)和罗丹明B(RB),评估了复合材料与单独的POM单元或Ta₂O₅相比增强的光催化活性。较大的BET表面积(129.7 - 188.8 m² g⁻¹)和多孔结构﹑小粒径(20 - 25 nm)、POM单元在Ta₂O₅骨架内的均匀分散、降低的带隙能量以及POM较强的电子接受能力,可以解释这种复合材料的高光催化活性。