Kan Pu-Yeh, Lu Xu, Hansen Jeffrey C, Hayes Jeffrey J
Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
Mol Cell Biol. 2007 Mar;27(6):2084-91. doi: 10.1128/MCB.02181-06. Epub 2007 Jan 22.
The core histone tail domains play a central role in chromatin structure and epigenetic processes controlling gene expression. Although little is known regarding the molecular details of tail interactions, it is likely that they participate in both short-range and long-range interactions between nucleosomes. Previously, we demonstrated that the H3 tail domain participates in internucleosome interactions during MgCl(2)-dependent condensation of model nucleosome arrays. However, these studies did not distinguish whether these internucleosome interactions represented short-range intra-array or longer-range interarray interactions. To better understand the complex interactions of the H3 tail domain during chromatin condensation, we have developed a new site-directed cross-linking method to identify and quantify interarray interactions mediated by histone tail domains. Interarray cross-linking was undetectable under salt conditions that induced only local folding, but was detected concomitant with salt-dependent interarray oligomerization at higher MgCl(2) concentrations. Interestingly, lysine-to-glutamine mutations in the H3 tail domain to mimic acetylation resulted in little or no reduction in interarray cross-linking. In contrast, binding of a linker histone caused a much greater enhancement of interarray interactions for unmodified H3 tails compared to "acetylated" H3 tails. Collectively these results indicate that H3 tail domain performs multiple functions during chromatin condensation via distinct molecular interactions that can be differentially regulated by acetylation or binding of linker histones.
核心组蛋白尾部结构域在染色质结构和控制基因表达的表观遗传过程中起着核心作用。尽管关于尾部相互作用的分子细节知之甚少,但它们可能参与核小体之间的短程和长程相互作用。此前,我们证明了H3尾部结构域在模型核小体阵列依赖MgCl₂的凝聚过程中参与核小体间相互作用。然而,这些研究并未区分这些核小体间相互作用是代表短程的阵列内相互作用还是长程的阵列间相互作用。为了更好地理解染色质凝聚过程中H3尾部结构域的复杂相互作用,我们开发了一种新的定点交联方法,以识别和量化由组蛋白尾部结构域介导的阵列间相互作用。在仅诱导局部折叠的盐条件下,未检测到阵列间交联,但在较高MgCl₂浓度下,随着盐依赖性阵列间寡聚化的出现而检测到阵列间交联。有趣的是,H3尾部结构域中模拟乙酰化的赖氨酸到谷氨酰胺突变导致阵列间交联几乎没有减少或没有减少。相比之下,与“乙酰化”H3尾部相比,连接组蛋白的结合对未修饰H3尾部的阵列间相互作用有更大的增强作用。这些结果共同表明,H3尾部结构域在染色质凝聚过程中通过不同的分子相互作用执行多种功能,这些相互作用可被乙酰化或连接组蛋白的结合进行差异调节。