Suppr超能文献

H3尾部结构域在核小体阵列的折叠和自缔合过程中参与多种相互作用。

The H3 tail domain participates in multiple interactions during folding and self-association of nucleosome arrays.

作者信息

Kan Pu-Yeh, Lu Xu, Hansen Jeffrey C, Hayes Jeffrey J

机构信息

Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.

出版信息

Mol Cell Biol. 2007 Mar;27(6):2084-91. doi: 10.1128/MCB.02181-06. Epub 2007 Jan 22.

Abstract

The core histone tail domains play a central role in chromatin structure and epigenetic processes controlling gene expression. Although little is known regarding the molecular details of tail interactions, it is likely that they participate in both short-range and long-range interactions between nucleosomes. Previously, we demonstrated that the H3 tail domain participates in internucleosome interactions during MgCl(2)-dependent condensation of model nucleosome arrays. However, these studies did not distinguish whether these internucleosome interactions represented short-range intra-array or longer-range interarray interactions. To better understand the complex interactions of the H3 tail domain during chromatin condensation, we have developed a new site-directed cross-linking method to identify and quantify interarray interactions mediated by histone tail domains. Interarray cross-linking was undetectable under salt conditions that induced only local folding, but was detected concomitant with salt-dependent interarray oligomerization at higher MgCl(2) concentrations. Interestingly, lysine-to-glutamine mutations in the H3 tail domain to mimic acetylation resulted in little or no reduction in interarray cross-linking. In contrast, binding of a linker histone caused a much greater enhancement of interarray interactions for unmodified H3 tails compared to "acetylated" H3 tails. Collectively these results indicate that H3 tail domain performs multiple functions during chromatin condensation via distinct molecular interactions that can be differentially regulated by acetylation or binding of linker histones.

摘要

核心组蛋白尾部结构域在染色质结构和控制基因表达的表观遗传过程中起着核心作用。尽管关于尾部相互作用的分子细节知之甚少,但它们可能参与核小体之间的短程和长程相互作用。此前,我们证明了H3尾部结构域在模型核小体阵列依赖MgCl₂的凝聚过程中参与核小体间相互作用。然而,这些研究并未区分这些核小体间相互作用是代表短程的阵列内相互作用还是长程的阵列间相互作用。为了更好地理解染色质凝聚过程中H3尾部结构域的复杂相互作用,我们开发了一种新的定点交联方法,以识别和量化由组蛋白尾部结构域介导的阵列间相互作用。在仅诱导局部折叠的盐条件下,未检测到阵列间交联,但在较高MgCl₂浓度下,随着盐依赖性阵列间寡聚化的出现而检测到阵列间交联。有趣的是,H3尾部结构域中模拟乙酰化的赖氨酸到谷氨酰胺突变导致阵列间交联几乎没有减少或没有减少。相比之下,与“乙酰化”H3尾部相比,连接组蛋白的结合对未修饰H3尾部的阵列间相互作用有更大的增强作用。这些结果共同表明,H3尾部结构域在染色质凝聚过程中通过不同的分子相互作用执行多种功能,这些相互作用可被乙酰化或连接组蛋白的结合进行差异调节。

相似文献

1
The H3 tail domain participates in multiple interactions during folding and self-association of nucleosome arrays.
Mol Cell Biol. 2007 Mar;27(6):2084-91. doi: 10.1128/MCB.02181-06. Epub 2007 Jan 22.
3
A distinct switch in interactions of the histone H4 tail domain upon salt-dependent folding of nucleosome arrays.
J Biol Chem. 2014 Sep 26;289(39):27342-27351. doi: 10.1074/jbc.M114.595140. Epub 2014 Aug 13.
4
Salt-dependent intra- and internucleosomal interactions of the H3 tail domain in a model oligonucleosomal array.
J Biol Chem. 2005 Sep 30;280(39):33552-7. doi: 10.1074/jbc.M507241200. Epub 2005 Aug 2.
5
Influence of histone tails and H4 tail acetylations on nucleosome-nucleosome interactions.
J Mol Biol. 2011 Dec 16;414(5):749-64. doi: 10.1016/j.jmb.2011.10.031. Epub 2011 Oct 25.
7
Intra- and inter-nucleosomal protein-DNA interactions of the core histone tail domains in a model system.
J Biol Chem. 2003 Jun 27;278(26):24217-24. doi: 10.1074/jbc.M302817200. Epub 2003 Apr 15.
9
Acetylated histone H4 tail enhances histone H3 tail acetylation by altering their mutual dynamics in the nucleosome.
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):19661-19663. doi: 10.1073/pnas.2010506117. Epub 2020 Aug 3.

引用本文的文献

1
2
HP1a promotes chromatin liquidity and drives spontaneous heterochromatin compartmentalization.
bioRxiv. 2025 Jan 18:2024.10.18.618981. doi: 10.1101/2024.10.18.618981.
4
Characterization of nucleosome sediments for protein interaction studies by solid-state NMR spectroscopy.
Magn Reson (Gott). 2021;2(1):187-202. doi: 10.5194/mr-2-187-2021. Epub 2021 Apr 21.
5
Histone Modifications, Internucleosome Dynamics, and DNA Stresses: How They Cooperate to "Functionalize" Nucleosomes.
Front Genet. 2022 Apr 28;13:873398. doi: 10.3389/fgene.2022.873398. eCollection 2022.
6
Histone H3 and H4 tails play an important role in nucleosome phase separation.
Biophys Chem. 2022 Apr;283:106767. doi: 10.1016/j.bpc.2022.106767. Epub 2022 Feb 2.
7
Conformational Dynamics of Histone H3 Tails in Chromatin.
J Phys Chem Lett. 2021 Jul 8;12(26):6174-6181. doi: 10.1021/acs.jpclett.1c01187. Epub 2021 Jun 29.
8
MMP-2 is a novel histone H3 N-terminal protease necessary for myogenic gene activation.
Epigenetics Chromatin. 2021 May 17;14(1):23. doi: 10.1186/s13072-021-00398-4.
9
Nucleosome composition regulates the histone H3 tail conformational ensemble and accessibility.
Nucleic Acids Res. 2021 May 7;49(8):4750-4767. doi: 10.1093/nar/gkab246.
10
Characterization of functional disordered regions within chromatin-associated proteins.
iScience. 2021 Jan 20;24(2):102070. doi: 10.1016/j.isci.2021.102070. eCollection 2021 Feb 19.

本文引用的文献

1
Histone H4-K16 acetylation controls chromatin structure and protein interactions.
Science. 2006 Feb 10;311(5762):844-7. doi: 10.1126/science.1124000.
2
Salt-dependent intra- and internucleosomal interactions of the H3 tail domain in a model oligonucleosomal array.
J Biol Chem. 2005 Sep 30;280(39):33552-7. doi: 10.1074/jbc.M507241200. Epub 2005 Aug 2.
4
Nucleosome and chromatin fiber dynamics.
Curr Opin Struct Biol. 2005 Apr;15(2):188-96. doi: 10.1016/j.sbi.2005.03.006.
6
Nucleosome arrays reveal the two-start organization of the chromatin fiber.
Science. 2004 Nov 26;306(5701):1571-3. doi: 10.1126/science.1103124.
7
Analysis of chromatin assembled in vivo using exogenous histones in Physarum polycephalum.
Methods. 2004 May;33(1):86-92. doi: 10.1016/j.ymeth.2003.10.023.
8
Intra- and inter-nucleosomal protein-DNA interactions of the core histone tail domains in a model system.
J Biol Chem. 2003 Jun 27;278(26):24217-24. doi: 10.1074/jbc.M302817200. Epub 2003 Apr 15.
9
Structures and interactions of the core histone tail domains.
Biopolymers. 2003 Apr;68(4):539-46. doi: 10.1002/bip.10303.
10
Chromatin fiber folding: requirement for the histone H4 N-terminal tail.
J Mol Biol. 2003 Mar 14;327(1):85-96. doi: 10.1016/s0022-2836(03)00025-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验