Suppr超能文献

玉米 B 染色体不分离的区域控制。

Regional control of nondisjunction of the B chromosome in maize.

机构信息

Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706.

出版信息

Genetics. 1978 Nov;90(3):613-27. doi: 10.1093/genetics/90.3.613.

Abstract

Control of nondisjunction in the maize B chromosome was studied using a set of B-10 translocations. The study focused on the possible effect of the proximal region of the B long arm. The experimental procedure utilized a combination of a 10(B) chromosome from one translocation with a B(10) from another translocation. The breakpoints of the two translocations were so located that combination of the two elements created a deletion in the proximal region of the B chromosome, but no deletion in chromosome 10. Two different types of deletions were established; one involved a portion of the euchromatic region and the other the entire heterochromatic portion comprising the distal half of the B long arm, except for the small euchromatic tip. Deletion of the heterochromatic portion did not exert any effect on nondisjunction. Deletions of different portions of the euchromatic region produce different responses. Some deletions resulted in typical B nondisjunctional activity; others resulted in the disappearance of this activity. It is concluded that a region within the euchromatic portion of the chromosome is critical for the nondisjunction of B chromosomes. Among 22 translocations with breakpoints in the euchromatic regions, three were proximal to the critical region, 16 were distal and the position of three others was not determined.

摘要

使用一组 B-10 易位来研究玉米 B 染色体的不分离控制。该研究集中在 B 染色体长臂近端区域的可能影响上。实验程序利用来自一个易位的 10(B) 染色体与另一个易位的 B(10)染色体组合。两个易位的断点位置如此设置,以至于两个元素的组合在 B 染色体的近端区域产生了缺失,但 10 号染色体没有缺失。建立了两种不同类型的缺失;一种涉及常染色质区域的一部分,另一种涉及整个异染色质部分,除了 B 染色体长臂的远端半部分的小常染色质尖端外。异染色质部分的缺失不会对不分离产生任何影响。常染色质区域不同部分的缺失会产生不同的反应。一些缺失导致典型的 B 染色体不分离活性;其他缺失导致这种活性消失。因此得出结论,染色体的常染色质部分内的一个区域对于 B 染色体的不分离至关重要。在 22 个具有常染色质区域断点的易位中,有 3 个位于关键区域附近,16 个位于远端,另外 3 个的位置尚未确定。

相似文献

1
Regional control of nondisjunction of the B chromosome in maize.
Genetics. 1978 Nov;90(3):613-27. doi: 10.1093/genetics/90.3.613.
3
Construction and uses of new compound B-A-A maize chromosome translocations.
Genetics. 2006 Dec;174(4):1755-65. doi: 10.1534/genetics.106.065540. Epub 2006 Oct 22.
4
Dominant X-chromosome nondisjunction mutants of Caenorhabditis elegans.
Genetics. 1982 Nov;102(3):379-400. doi: 10.1093/genetics/102.3.379.
6
Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism.
Plant Cell. 2007 Feb;19(2):524-33. doi: 10.1105/tpc.106.049577. Epub 2007 Feb 23.
7
The r-X1 deletion induces terminal deficiencies in the maize B chromosome.
Chromosome Res. 2021 Dec;29(3-4):351-360. doi: 10.1007/s10577-021-09671-4. Epub 2021 Sep 3.
8
Characterization of AFLP sequences from regions of maize B chromosome defined by 12 B-10L translocations.
Genetics. 2005 Jan;169(1):375-88. doi: 10.1534/genetics.104.032417. Epub 2004 Oct 16.
9
Cytomolecular characterization and origin of de novo formed maize B chromosome variants.
Chromosome Res. 2016 May;24(2):183-95. doi: 10.1007/s10577-015-9516-2. Epub 2016 Jan 9.
10
Nondisjunction: localization of the controlling site in the maize B chromosome.
Genetics. 1973 Mar;73(3):387-91. doi: 10.1093/genetics/73.3.387.

引用本文的文献

1
Maize B chromosome affects the flowering time.
Theor Appl Genet. 2025 Mar 14;138(4):73. doi: 10.1007/s00122-025-04862-7.
2
The non-Mendelian behavior of plant B chromosomes.
Chromosome Res. 2022 Sep;30(2-3):229-239. doi: 10.1007/s10577-022-09687-4. Epub 2022 Apr 12.
3
The supernumerary B chromosome of maize: drive and genomic conflict.
Open Biol. 2021 Nov;11(11):210197. doi: 10.1098/rsob.210197. Epub 2021 Nov 3.
4
De novo centromere formation on chromosome fragments with an inactive centromere in maize (Zea mays).
Chromosome Res. 2021 Dec;29(3-4):313-325. doi: 10.1007/s10577-021-09670-5. Epub 2021 Aug 18.
5
Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution.
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2104254118.
6
Novel B-chromosome-specific transcriptionally active sequences are present throughout the maize B chromosome.
Mol Genet Genomics. 2020 Mar;295(2):313-325. doi: 10.1007/s00438-019-01623-2. Epub 2019 Nov 15.
7
The Behavior of the Maize B Chromosome and Centromere.
Genes (Basel). 2018 Oct 1;9(10):476. doi: 10.3390/genes9100476.
8
Analysis of B chromosome nondisjunction induced by the r-X1 deficiency in maize.
Chromosome Res. 2018 Sep;26(3):153-162. doi: 10.1007/s10577-017-9567-7. Epub 2017 Nov 20.
10
Cytomolecular characterization and origin of de novo formed maize B chromosome variants.
Chromosome Res. 2016 May;24(2):183-95. doi: 10.1007/s10577-015-9516-2. Epub 2016 Jan 9.

本文引用的文献

1
Nondisjunction: localization of the controlling site in the maize B chromosome.
Genetics. 1973 Mar;73(3):387-91. doi: 10.1093/genetics/73.3.387.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验