Suppr超能文献

用于寡糖亲水作用毛细管电色谱分析的多孔聚丙烯酰胺整体柱

Porous polyacrylamide monoliths in hydrophilic interaction capillary electrochromatography of oligosaccharides.

作者信息

Guryca Vilém, Mechref Yehia, Palm Anders K, Michálek Jirí, Pacáková Vera, Novotný Milos V

机构信息

Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Ave., Indiana 47405-7102, USA.

出版信息

J Biochem Biophys Methods. 2007 Feb 23;70(1):3-13. doi: 10.1016/j.jbbm.2006.11.002. Epub 2006 Nov 10.

Abstract

Capillary electrochromatography (CEC) of oligosaccharides in porous polyacrylamide monoliths has been explored. While it is possible to alter separation capacity for various compounds by copolymerization of suitable separation ligands in the polymerization backbone, "blank" acrylamide matrix is also capable of sufficient resolution of oligosaccharides in the hydrophilic interaction mode. The "blank" acrylamide network, formed with a more rigid crosslinker, provides maximum efficiency for separations (routinely up to 350,000 theoretical plates/m for fluorescently-labeled oligosaccharides). These columns yield a high spatial resolution of the branched glycan isomers and large column permeabilities. From the structural point of view, some voids are observable in the monoliths at the mesoporous range (mean pore radius ca. 35 nm, surface area of 74 m2/g), as measured by intrusion porosimetry in the dry state.

摘要

已对多孔聚丙烯酰胺整体柱中寡糖的毛细管电色谱(CEC)进行了探索。虽然通过在聚合主链中共聚合适的分离配体可以改变对各种化合物的分离能力,但“空白”丙烯酰胺基质在亲水相互作用模式下也能够对寡糖进行充分分离。由更刚性的交联剂形成的“空白”丙烯酰胺网络为分离提供了最大效率(对于荧光标记的寡糖,通常高达350,000理论塔板数/米)。这些色谱柱对支链聚糖异构体具有高空间分辨率,并且柱渗透率大。从结构角度来看,通过干态压汞法测量,在整体柱的中孔范围内(平均孔径约35 nm,表面积为74 m2/g)可观察到一些空隙。

相似文献

1
Porous polyacrylamide monoliths in hydrophilic interaction capillary electrochromatography of oligosaccharides.
J Biochem Biophys Methods. 2007 Feb 23;70(1):3-13. doi: 10.1016/j.jbbm.2006.11.002. Epub 2006 Nov 10.
5
Monoliths with chiral surface functionalization for enantioselective capillary electrochromatography.
J Pharm Biomed Anal. 2010 Dec 15;53(5):1091-123. doi: 10.1016/j.jpba.2010.05.026. Epub 2010 Jun 4.
9
Enantioseparation by ligand-exchange using particle-loaded monoliths: capillary-LC versus capillary electrochromatography.
J Biochem Biophys Methods. 2007 Feb 23;70(1):77-85. doi: 10.1016/j.jbbm.2006.06.004. Epub 2006 Aug 7.
10
CEC column behaviour of butyl and lauryl methacrylate monoliths prepared in non-aqueous media.
Electrophoresis. 2009 Feb;30(4):607-15. doi: 10.1002/elps.200800485.

引用本文的文献

1
Rapid detection of trace bacteria in biofluids using porous monoliths in microchannels.
Biosens Bioelectron. 2014 Apr 15;54:435-41. doi: 10.1016/j.bios.2013.11.012. Epub 2013 Nov 12.
2
Glycan labeling strategies and their use in identification and quantification.
Anal Bioanal Chem. 2010 Aug;397(8):3457-81. doi: 10.1007/s00216-010-3532-z. Epub 2010 Mar 12.
3
CEC: selected developments that caught my eye since the year 2000.
Electrophoresis. 2009 Jun;30 Suppl 1(Suppl 1):S68-82. doi: 10.1002/elps.200900062.

本文引用的文献

2
Pore size characterization of monolith for electrochromatography via atomic force microscopy studies in air and liquid phase.
J Chromatogr A. 2006 Mar 3;1108(1):83-9. doi: 10.1016/j.chroma.2005.12.037. Epub 2006 Jan 25.
4
Comparison of the efficiency of microparticulate and monolithic capillary columns.
J Sep Sci. 2004 Dec;27(17-18):1431-40. doi: 10.1002/jssc.200401826.
5
7
Characterization of polyacrylamide based monolithic columns.
J Sep Sci. 2004 Jul;27(10-11):828-36. doi: 10.1002/jssc.200401836.
8
Monoliths for fast bioseparation and bioconversion and their applications in biotechnology.
J Sep Sci. 2004 Jul;27(10-11):767-78. doi: 10.1002/jssc.200401812.
10
Development and application of polymeric monolithic stationary phases for capillary electrochromatography.
J Chromatogr A. 2004 Jul 30;1044(1-2):3-22. doi: 10.1016/j.chroma.2004.04.057.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验