Shimano J
Department of Anatomy, Kanazawa Medical University, Ishikawa, Japan.
Aichi Gakuin Daigaku Shigakkai Shi. 1990 Jun;28(2):547-71.
The submandibular gland is used in most studies of the development and differentiation of the salivary glands. There are only a few reports on the genesis and growth of the parotid gland: reports by Emi (1939), Uehashi (1960), Harold (1961), Redman and Sreebny (1971), Eguchi (1975), Takeuchi (1978) and Redman et al. (1980) who used rats and those by Akiyoshi (1929) and Iwata (1958) who used humans. Since there are no reports on the carbohydrates in parotid glandular cells, we carried out histochemical studies of changes in the carbohydrates of the secretory granules in parotid glandular cells in young rats.
Wistar rats were mated, and 5 male offspring were killed with chloroform daily between the time of birth (day 0) and day 13 and weekly between the 2nd and 8th weeks after birth. Their parotid glands were immediately resected, fixed in buffered formalin, embedded in paraffin and cut into 6 mu sections for the following histochemical reactions (Tables 1 and 2): PAS reaction (Lillie's technique), PAS-dimedone reaction reaction and salivary digestion test for the determination of glycogen; acetylation-PAS reaction, acetylation-saponification-PAS reaction and sulfation-toluidine blue reaction (TB; pH 2.5) for the determination of neutral mucopolysaccharides; Sugiyama's neutral red technique and Alcian blue staining (AB; pH 2.5) for the determination of weekly acidic mucopolysaccharides; Sugiyama's neutral red technique and Alcian blue staining (pH 1.0 and 0.5) for the determination of strongly acidic mucopolysaccharides; high iron diamine (HID) test, periodic acid-treated HID test, HID-AB (pH 2.5) test, low iron diamine (LTD) test and periodic acid-treated LID test for the determination of compound carbohydrates; and PA-Con A-HRP-AB test (pH 2.5) and PA-red-Con A-HRP-AB test (pH 2.5) as paradox lectin tests.
Histological findings: The terminal of the parotid gland of the young rats showed two types of granule-containing cells. One of the two types was mucoid cells with large irregular massive granules strongly positive for PAS present above the nucleus (L cells), and the other, serous cells with fine granules moderately to weakly positive for PAS (S cells). L cells were present between days 1 and 11 after birth, being most abundant between days 4 and 7. In S cells, the morphology of granules began to be obvious on day 1 and to be similar to that of cells in adult rats at week 4 after birth. 1. Glycogen: i) PAS reaction: L cells showed moderately positive reaction between days 1 and 3 after birth and strongly positive reaction between days 4 and 11. S cells showed weakly positive reaction between days 1 and 3 after birth and moderately positive reaction between day 4 and week 8. ii) PAS-dimedone reaction: No glycogen was detected in the L or S cells of any animal. iii) Salivary digestion test: No glycogen was detected in the L or S cells of any animal. 2. Neutral mucopolysaccharides: i) Acetylation-PAS reaction: L cells showed slightly positive reaction only on days 3, 6 and 7. ii) Acetylation-saponification-PAS reaction: L cells showed slightly positive reaction, and S cells, weakly positive reaction starting on day 10 after birth. iii) Sulfation-TB reaction (pH 2.5): L cells showed mild metachromasia between days 2 and 9 after birth, and S cells, starting at week 3. 3. Weakly acidic mucopolysaccharides: i) Sugiyama's neutral red technique: L cells showed weak metachromatic reaction on days 3, 4 and 5 after birth and slight metachromatic reaction between days 8 and 11. S cell were negative. ii) AB staining (pH 2.5): L cells showed slightly positive reaction on days 1 and 2 after birth and moderately positive reaction between days 3 and 11. S cells showed slightly positive reaction on days 3, 4, 7 and 8 after birth. 4. Strongly acidic mucopolysaccharides: i) Sugiyama's neutral red technique: Both L and S cells were negative. ii) AB staining (pH 1.0): L cells were slightly positive betwee
在大多数唾液腺发育和分化研究中使用的是下颌下腺。关于腮腺发生和生长的报道较少:Emi(1939年)、上桥(1960年)、哈罗德(1961年)、雷德曼和斯里布尼(1971年)、江口(1975年)、竹内(1978年)以及雷德曼等人(1980年)使用大鼠进行的研究,还有秋吉(1929年)和岩田(1958年)使用人类进行的研究。由于尚无关于腮腺腺细胞中碳水化合物的报道,我们对幼鼠腮腺腺细胞分泌颗粒中碳水化合物的变化进行了组织化学研究。
将Wistar大鼠进行交配,在出生时(第0天)至第13天期间每天用氯仿处死5只雄性后代,在出生后第2周至第8周期间每周处死一次。立即切除其腮腺,固定于缓冲福尔马林中,石蜡包埋,切成6μm切片用于以下组织化学反应(表1和表2):用于糖原测定的PAS反应(利利技术)、PAS - 二甲苯酮反应和唾液消化试验;用于中性粘多糖测定的乙酰化 - PAS反应、乙酰化 - 皂化 - PAS反应和硫酸化 - 甲苯胺蓝反应(TB;pH 2.5);用于弱酸性粘多糖测定的杉山中性红技术和阿尔辛蓝染色(AB;pH 2.5);用于强酸性粘多糖测定的杉山中性红技术和阿尔辛蓝染色(pH 1.0和0.5);用于复合碳水化合物测定的高铁二胺(HID)试验、高碘酸处理的HID试验、HID - AB(pH 2.5)试验、低铁二胺(LTD)试验和高碘酸处理的LID试验;以及作为反常凝集素试验的PA - Con A - HRP - AB试验(pH 2.5)和PA - 红色Con A - HRP - AB试验(pH 2.5)。
组织学发现:幼鼠腮腺末端显示出两种含颗粒细胞。两种细胞中的一种是粘液样细胞,其核上方存在对PAS呈强阳性的大的不规则块状颗粒(L细胞),另一种是浆液性细胞,其细颗粒对PAS呈中度至弱阳性(S细胞)。L细胞在出生后第1天至第11天存在,在第4天至第7天最为丰富。在S细胞中,颗粒形态在出生后第1天开始明显,在出生后第4周时与成年大鼠细胞的形态相似。1. 糖原:i)PAS反应:L细胞在出生后第1天至第3天呈中度阳性反应,在第4天至第11天呈强阳性反应。S细胞在出生后第1天至第3天呈弱阳性反应,在第4天至第8周呈中度阳性反应。ii)PAS - 二甲苯酮反应:在任何动物的L或S细胞中均未检测到糖原。iii)唾液消化试验:在任何动物的L或S细胞中均未检测到糖原。2. 中性粘多糖:i)乙酰化 - PAS反应:L细胞仅在第3天、第6天和第7天呈轻微阳性反应。ii)乙酰化 - 皂化 - PAS反应:L细胞呈轻微阳性反应,S细胞在出生后第10天开始呈弱阳性反应。iii)硫酸化 - TB反应(pH 2.5):L细胞在出生后第2天至第9天呈轻度异染性,S细胞从第3周开始呈异染性。3. 弱酸性粘多糖:i)杉山中性红技术:L细胞在出生后第3天、第4天和第5天呈弱异染反应,在第8天至第11天呈轻微异染反应。S细胞为阴性。ii)AB染色(pH 2.5):L细胞在出生后第1天和第2天呈轻微阳性反应,在第3天至第11天呈中度阳性反应。S细胞在出生后第3天、第4天、第7天和第8天呈轻微阳性反应。4. 强酸性粘多糖:i)杉山中性红技术:L和S细胞均为阴性。ii)AB染色(pH 1.0):L细胞在……之间呈轻微阳性