Jaber Farouk, Schummer Claude, Al Chami Jamal, Mirabel Philippe, Millet Maurice
Laboratoire d'Analyse de Pesticides et de Micro-Polluants Organiques, Commission Libanaise de l'Energie Atomique, BP 11, 8281 Riad El Solh, 1107 2260, Beirut, Lebanon.
Anal Bioanal Chem. 2007 Apr;387(7):2527-35. doi: 10.1007/s00216-006-1115-9. Epub 2007 Jan 27.
Solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry has been used for analysis of four phenols and sixteen nitrophenols in rainwater samples. Analytes were extracted from the water in the immersion mode and derivatised for 5 min during direct desorption in the GC injector. Before desorption, 2 microL N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MDBSTFA) was introduced into the injector, which was maintained at 280 degrees C. Different conditions affecting extraction efficiency were studied, including temperature, type of microextraction fibre, and effect of pH and ionic strength. Five different fibre coatings were tested: 85-mum polyacrylate (PA), 100-microm polydimethylsiloxane (PDMS), 65-mum Carbowax-divinylbenzene (CW-DVB), 75-microm Carboxen-polydimethylsiloxane (CAR-PDMS), and 65-microm polydimethylsiloxane-divinylbenzene (PDMS-DVB). The best conditions were use of PA fibres for 40 min at ambient temperature (75 g NaCl per 100 mL, pH 3.0). MDBSTFA was used as derivatising agent because it enables analysis of phenols derivatives with high confidence in identification, because in electron-impact mode TBDMS-phenol derivatives produce the specific M-57 ion. Quantification was achieved by using 4-nitrophenol-d4, at 1 mg L(-1), as internal standard. Linearity was good, with correlation coefficients in the range 0.9888 (o-cresol) to 0.9987 (dinitro-o-cresol, DNOC). Detection limits varied between 0.208 and 99.3 microg L(-1) and quantification limits between 0.693 and 331 microg L(-1). Uncertainties varied between 8.7% (phenol) and 17.9% (4-methyl-2-nitrophenol). The method was successfully applied to the analysis of rainwater collected at urban and rural sites in Alsace (East of France). Because of derivatisation in the injector and the associated high temperature, the lifetime of the fibre is severely reduced.
固相微萃取(SPME)结合气相色谱 - 质谱法已用于分析雨水样品中的四种酚类和十六种硝基酚类。分析物采用浸入模式从水中萃取,并在气相色谱进样器直接解吸过程中衍生化5分钟。解吸前,将2微升N - (叔丁基二甲基甲硅烷基) - N - 甲基三氟乙酰胺(MDBSTFA)引入保持在280℃的进样器中。研究了影响萃取效率的不同条件,包括温度、微萃取纤维类型以及pH和离子强度的影响。测试了五种不同的纤维涂层:85微米聚丙烯酸酯(PA)、100微米聚二甲基硅氧烷(PDMS)、65微米Carbowax - 二乙烯基苯(CW - DVB)、75微米Carboxen - 聚二甲基硅氧烷(CAR - PDMS)和65微米聚二甲基硅氧烷 - 二乙烯基苯(PDMS - DVB)。最佳条件是在室温下使用PA纤维40分钟(每100毫升含75克氯化钠,pH 3.0)。使用MDBSTFA作为衍生化剂,因为它能够在鉴定时对酚类衍生物进行高可信度分析,因为在电子轰击模式下,TBDMS - 酚类衍生物会产生特定的m - 57离子。通过使用浓度为1毫克/升的4 - 硝基苯酚 - d4作为内标进行定量。线性良好,相关系数范围为0.9888(邻甲酚)至0.9987(二硝基邻甲酚,DNOC)。检测限在0.208至99.3微克/升之间,定量限在0.693至331微克/升之间。不确定度在8.7%(苯酚)至17.9%(4 - 甲基 - 2 - 硝基苯酚)之间。该方法成功应用于法国东部阿尔萨斯城乡地区收集的雨水分析。由于在进样器中进行衍生化以及相关的高温,纤维的使用寿命会严重缩短。