Suppr超能文献

AAA+ ATP酶的底物识别:线粒体外膜间隙中ATP依赖性蛋白酶Yme1的不同底物结合模式

Substrate recognition by AAA+ ATPases: distinct substrate binding modes in ATP-dependent protease Yme1 of the mitochondrial intermembrane space.

作者信息

Graef Martin, Seewald Georgeta, Langer Thomas

机构信息

Institut für Genetik, Universität zu Köln, Zülpicher Strasse 47, 50674 Köln, Germany.

出版信息

Mol Cell Biol. 2007 Apr;27(7):2476-85. doi: 10.1128/MCB.01721-06. Epub 2007 Jan 29.

Abstract

The energy-dependent proteolysis of cellular proteins is mediated by conserved proteolytic AAA(+) complexes. Two such machines, the m- and i-AAA proteases, are present in the mitochondrial inner membrane. They exert chaperone-like properties and specifically degrade nonnative membrane proteins. However, molecular mechanisms of substrate engagement by AAA proteases remained elusive. Here, we define initial steps of substrate recognition and identify two distinct substrate binding sites in the i-AAA protease subunit Yme1. Misfolded polypeptides are recognized by conserved helices in proteolytic and AAA domains. Structural modeling reveals a lattice-like arrangement of these helices at the surface of hexameric AAA protease ring complexes. While helices within the AAA domain apparently play a general role for substrate binding, the requirement for binding to surface-exposed helices within the proteolytic domain is determined by the folding and membrane association of substrates. Moreover, an assembly factor of cytochrome c oxidase, Cox20, serves as a substrate-specific cofactor during proteolysis and modulates the initial interaction of nonassembled Cox2 with the protease. Our findings therefore reveal the existence of alternative substrate recognition pathways within AAA proteases and shed new light on molecular mechanisms ensuring the specificity of proteolysis by energy-dependent proteases.

摘要

细胞蛋白的能量依赖性蛋白水解由保守的蛋白水解AAA(+)复合物介导。线粒体内膜中存在两种这样的机制,即m-AAA蛋白酶和i-AAA蛋白酶。它们具有类似伴侣蛋白的特性,可特异性降解非天然膜蛋白。然而,AAA蛋白酶与底物结合的分子机制仍不清楚。在这里,我们定义了底物识别的初始步骤,并在i-AAA蛋白酶亚基Yme1中鉴定出两个不同的底物结合位点。错误折叠的多肽由蛋白水解结构域和AAA结构域中的保守螺旋识别。结构建模揭示了这些螺旋在六聚体AAA蛋白酶环复合物表面呈晶格状排列。虽然AAA结构域内的螺旋显然在底物结合中起普遍作用,但与蛋白水解结构域内表面暴露螺旋结合的要求取决于底物的折叠和膜结合情况。此外,细胞色素c氧化酶的组装因子Cox20在蛋白水解过程中作为底物特异性辅助因子,并调节未组装的Cox2与蛋白酶的初始相互作用。因此,我们的研究结果揭示了AAA蛋白酶内存在替代底物识别途径,并为确保能量依赖性蛋白酶蛋白水解特异性的分子机制提供了新的见解。

相似文献

2
Substrate specific consequences of central pore mutations in the i-AAA protease Yme1 on substrate engagement.
J Struct Biol. 2006 Oct;156(1):101-8. doi: 10.1016/j.jsb.2006.01.009. Epub 2006 Feb 21.
4
Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease.
Nature. 1999 Mar 25;398(6725):348-51. doi: 10.1038/18704.
6
Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease.
J Biol Chem. 2011 Feb 11;286(6):4404-11. doi: 10.1074/jbc.M110.158741. Epub 2010 Dec 8.
7
Mgr3p and Mgr1p are adaptors for the mitochondrial i-AAA protease complex.
Mol Biol Cell. 2008 Dec;19(12):5387-97. doi: 10.1091/mbc.e08-01-0103. Epub 2008 Oct 8.
10
Multiple roles of the Cox20 chaperone in assembly of Saccharomyces cerevisiae cytochrome c oxidase.
Genetics. 2012 Feb;190(2):559-67. doi: 10.1534/genetics.111.135665. Epub 2011 Nov 17.

引用本文的文献

1
Recognition of small Tim chaperones by the mitochondrial Yme1 protease.
bioRxiv. 2025 Jul 24:2025.07.23.666395. doi: 10.1101/2025.07.23.666395.
2
YME1L1 Dysfunction Associated With 3-Methylglutaconic Aciduria.
J Inherit Metab Dis. 2025 May;48(3):e70029. doi: 10.1002/jimd.70029.
3
Protein import in mitochondria biogenesis: guided by targeting signals and sustained by dedicated chaperones.
RSC Adv. 2021 Oct 1;11(51):32476-32493. doi: 10.1039/d1ra04497d. eCollection 2021 Sep 27.
4
Recent Advances in Understanding the Structural and Functional Evolution of FtsH Proteases.
Front Plant Sci. 2022 Apr 6;13:837528. doi: 10.3389/fpls.2022.837528. eCollection 2022.
5
Current Understanding of Temperature Stress-Responsive Chloroplast FtsH Metalloproteases.
Int J Mol Sci. 2021 Nov 9;22(22):12106. doi: 10.3390/ijms222212106.
6
AAA+ ATPases in Protein Degradation: Structures, Functions and Mechanisms.
Biomolecules. 2020 Apr 18;10(4):629. doi: 10.3390/biom10040629.
7
Proteolytic Control of Lipid Metabolism.
ACS Chem Biol. 2019 Nov 15;14(11):2406-2423. doi: 10.1021/acschembio.9b00695. Epub 2019 Sep 30.
8
Unique Structural Features of the Mitochondrial AAA+ Protease AFG3L2 Reveal the Molecular Basis for Activity in Health and Disease.
Mol Cell. 2019 Sep 5;75(5):1073-1085.e6. doi: 10.1016/j.molcel.2019.06.016. Epub 2019 Jul 18.
10
m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration.
Cell Res. 2018 Mar;28(3):296-306. doi: 10.1038/cr.2018.17. Epub 2018 Feb 16.

本文引用的文献

1
Studying proteolysis within mitochondria.
Methods Mol Biol. 2007;372:343-60. doi: 10.1007/978-1-59745-365-3_25.
2
Structure of the whole cytosolic region of ATP-dependent protease FtsH.
Mol Cell. 2006 Jun 9;22(5):575-85. doi: 10.1016/j.molcel.2006.04.020.
3
Substrate specific consequences of central pore mutations in the i-AAA protease Yme1 on substrate engagement.
J Struct Biol. 2006 Oct;156(1):101-8. doi: 10.1016/j.jsb.2006.01.009. Epub 2006 Feb 21.
4
The molecular architecture of the metalloprotease FtsH.
Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3066-71. doi: 10.1073/pnas.0600031103. Epub 2006 Feb 16.
5
How evolutionary pressure against protein aggregation shaped chaperone specificity.
J Mol Biol. 2006 Feb 3;355(5):1037-47. doi: 10.1016/j.jmb.2005.11.035. Epub 2005 Nov 28.
6
A genomewide screen for petite-negative yeast strains yields a new subunit of the i-AAA protease complex.
Mol Biol Cell. 2006 Jan;17(1):213-26. doi: 10.1091/mbc.e05-06-0585. Epub 2005 Nov 2.
8
Roles of the N-domains of the ClpA unfoldase in binding substrate proteins and in stable complex formation with the ClpP protease.
J Biol Chem. 2005 Dec 9;280(49):40838-44. doi: 10.1074/jbc.M507879200. Epub 2005 Oct 5.
9
AAA+ proteins: have engine, will work.
Nat Rev Mol Cell Biol. 2005 Jul;6(7):519-29. doi: 10.1038/nrm1684.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验