Knaus Anne, Zong Xiangang, Beetz Nadine, Jahns Roland, Lohse Martin J, Biel Martin, Hein Lutz
Department of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany.
Circulation. 2007 Feb 20;115(7):872-80. doi: 10.1161/CIRCULATIONAHA.106.667675. Epub 2007 Jan 29.
Inhibition of cardiac sympathetic tone represents an important strategy for treatment of cardiovascular disease, including arrhythmia, coronary heart disease, and chronic heart failure. Activation of presynaptic alpha2-adrenoceptors is the most widely accepted mechanism of action of the antisympathetic drug clonidine; however, other target proteins have been postulated to contribute to the in vivo actions of clonidine.
To test whether clonidine elicits pharmacological effects independent of alpha2-adrenoceptors, we have generated mice with a targeted deletion of all 3 alpha2-adrenoceptor subtypes (alpha2ABC-/-). Alpha2ABC-/- mice were completely unresponsive to the analgesic and hypnotic effects of clonidine; however, clonidine significantly lowered heart rate in alpha2ABC-/- mice by up to 150 bpm. Clonidine-induced bradycardia in conscious alpha2ABC-/- mice was 32.3% (10 microg/kg) and 26.6% (100 microg/kg) of the effect in wild-type mice. A similar bradycardic effect of clonidine was observed in isolated spontaneously beating right atria from alpha2ABC-knockout and wild-type mice. Clonidine inhibited the native pacemaker current (I(f)) in isolated sinoatrial node pacemaker cells and the I(f)-generating hyperpolarization-activated cyclic nucleotide-gated (HCN) 2 and HCN4 channels in transfected HEK293 cells. As a consequence of blocking I(f), clonidine reduced the slope of the diastolic depolarization and the frequency of pacemaker potentials in sinoatrial node cells from wild-type and alpha2ABC-knockout mice.
Direct inhibition of cardiac HCN pacemaker channels contributes to the bradycardic effects of clonidine gene-targeted mice in vivo, and thus, clonidine-like drugs represent novel structures for future HCN channel inhibitors.
抑制心脏交感神经张力是治疗心血管疾病(包括心律失常、冠心病和慢性心力衰竭)的重要策略。突触前α2肾上腺素能受体的激活是抗交感神经药物可乐定最广泛接受的作用机制;然而,其他靶蛋白也被认为与可乐定的体内作用有关。
为了测试可乐定是否能产生独立于α2肾上腺素能受体的药理作用,我们构建了所有三种α2肾上腺素能受体亚型均靶向缺失的小鼠(α2ABC-/-)。α2ABC-/-小鼠对可乐定的镇痛和催眠作用完全无反应;然而,可乐定可使α2ABC-/-小鼠的心率显著降低,降幅高达150次/分钟。清醒的α2ABC-/-小鼠中可乐定诱导的心动过缓分别为野生型小鼠作用的32.3%(10微克/千克)和26.6%(100微克/千克)。在来自α2ABC基因敲除和野生型小鼠的离体自发搏动右心房中也观察到了可乐定类似的心动过缓作用。可乐定抑制离体窦房结起搏细胞的天然起搏电流(I(f))以及转染的HEK293细胞中产生I(f)的超极化激活环核苷酸门控(HCN)2和HCN4通道。由于阻断了I(f),可乐定降低了野生型和α2ABC基因敲除小鼠窦房结细胞舒张期去极化的斜率和起搏电位的频率。
直接抑制心脏HCN起搏通道有助于可乐定基因靶向小鼠在体内产生心动过缓作用,因此,类似可乐定的药物代表了未来HCN通道抑制剂的新型结构。