Roy Amy H, Lenges Christian P, Brookhart Maurice
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.
J Am Chem Soc. 2007 Feb 21;129(7):2082-93. doi: 10.1021/ja066509x. Epub 2007 Jan 31.
Rhodium (I) bis-olefin complexes CpRh(VTMS)(2) and CpRh(VTMS)(2) (Cp = C(5)Me(5), Cp = C(5)Me(4)CF(3), VTMS = vinyl trimethylsilane) were found to catalyze the addition of aromatic aldehydes to olefins to form ketones. Use of the more electron-deficient catalyst CpRh(VTMS)(2) results in faster reaction rates, better selectivity for linear ketone products from alpha-olefins, and broader reaction scope. NMR studies of the hydroacylation of vinyltrimethylsilane showed that the starting Rh(I) bis-olefin complexes and the corresponding Cp*/Rh(CH(2)CH(2)SiMe(3))(CO)(Ar) complexes were catalyst resting states, with an equilibrium established between them prior to turnover. Mechanistic studies suggested that CpRh(VTMS)(2) displayed a faster turnover frequency (relative to CpRh(VTMS)(2)) because of an increase in the rate of reductive elimination, the turnover-limiting step, from the more electron-deficient metal center of CpRh(VTMS)(2). Reaction of Cp/Rh(CH(2)CH(2)SiMe(3))(CO)(Ar) with PMe(3) yields acyl complexes Cp*/RhC(O)CH(2)CH(2)SiMe(3)(Ar); measured first-order rates of reductive elimination of ketone from these Rh(III) complexes established that the Cp ligand accelerates this process relative to the Cp* ligand.
铑(I)双烯烃配合物CpRh(VTMS)₂和CpRh(VTMS)₂(Cp = C₅Me₅,Cp = C₅Me₄CF₃,VTMS = 乙烯基三甲基硅烷)被发现可催化芳族醛与烯烃加成形成酮。使用电子缺乏程度更高的催化剂CpRh(VTMS)₂可实现更快的反应速率、对α-烯烃线性酮产物具有更好的选择性以及更广泛的反应范围。乙烯基三甲基硅烷氢甲酰化反应的核磁共振研究表明,起始的Rh(I)双烯烃配合物和相应的Cp*/Rh(CH₂CH₂SiMe₃)(CO)(Ar)配合物是催化剂的静止状态,在反应发生之前它们之间建立了平衡。机理研究表明,CpRh(VTMS)₂表现出更快的周转频率(相对于CpRh(VTMS)₂),这是因为从CpRh(VTMS)₂电子缺乏程度更高的金属中心进行还原消除(这是周转限制步骤)的速率增加。Cp/Rh(CH₂CH₂SiMe₃)(CO)(Ar)与PMe₃反应生成酰基配合物Cp*/RhC(O)CH₂CH₂SiMe₃(Ar);从这些Rh(III)配合物中还原消除酮的一级反应速率测定结果表明,相对于Cp*配体,Cp配体加速了这一过程。