Suppr超能文献

针对人类顶复门寄生虫中的嘌呤和嘧啶代谢

Targeting purine and pyrimidine metabolism in human apicomplexan parasites.

作者信息

Hyde John E

机构信息

Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7ND, UK.

出版信息

Curr Drug Targets. 2007 Jan;8(1):31-47. doi: 10.2174/138945007779315524.

Abstract

Synthesis de novo, acquisition by salvage and interconversion of purines and pyrimidines represent the fundamental requirements for their eventual assembly into nucleic acids as nucleotides and the deployment of their derivatives in other biochemical pathways. A small number of drugs targeted to nucleotide metabolism, by virtue of their effect on folate biosynthesis and recycling, have been successfully used against apicomplexan parasites such as Plasmodium and Toxoplasma for many years, although resistance is now a major problem in the prevention and treatment of malaria. Many targets not involving folate metabolism have also been explored at the experimental level. However, the unravelling of the genome sequences of these eukaryotic unicellular organisms, together with increasingly sophisticated molecular analyses, opens up possibilities of introducing new drugs that could interfere with these processes. This review examines the status of established drugs of this type and the potential for further exploiting the vulnerability of apicomplexan human pathogens to inhibition of this key area of metabolism.

摘要

嘌呤和嘧啶的从头合成、补救途径获取以及相互转化是它们最终组装成核苷酸形式的核酸以及其衍生物在其他生化途径中发挥作用的基本要求。多年来,少数靶向核苷酸代谢的药物凭借其对叶酸生物合成和循环利用的影响,已成功用于对抗诸如疟原虫和弓形虫等顶复门寄生虫,尽管耐药性如今已成为疟疾预防和治疗中的一个主要问题。在实验层面也探索了许多不涉及叶酸代谢的靶点。然而,这些真核单细胞生物基因组序列的解析以及日益精密的分子分析,为引入能够干扰这些过程的新药开辟了可能性。本综述考察了这类既定药物的现状,以及进一步利用顶复门人类病原体在这一关键代谢领域易受抑制的特性的潜力。

相似文献

1
Targeting purine and pyrimidine metabolism in human apicomplexan parasites.
Curr Drug Targets. 2007 Jan;8(1):31-47. doi: 10.2174/138945007779315524.
2
New drugs and drug targets for human diseases caused by apicomplexan parasites.
Curr Drug Targets. 2007 Jan;8(1):1-2. doi: 10.2174/138945007779315588.
3
Toxoplasma gondii: the model apicomplexan.
Int J Parasitol. 2004 Mar 9;34(3):423-32. doi: 10.1016/j.ijpara.2003.12.009.
4
Purine and pyrimidine metabolism in Leishmania.
Adv Exp Med Biol. 2008;625:141-54. doi: 10.1007/978-0-387-77570-8_12.
5
Purines and pyrimidines in malarial parasites.
Blood Cells. 1990;16(2-3):467-84; discussion 485-98.
6
Biosynthetic pathways of plastid-derived organelles as potential drug targets against parasitic apicomplexa.
Curr Drug Targets Immune Endocr Metabol Disord. 2003 Jun;3(2):99-109. doi: 10.2174/1568008033340261.
7
Molecules targeting the purine salvage pathway in Apicomplexan parasites.
Trends Parasitol. 2007 Aug;23(8):384-9. doi: 10.1016/j.pt.2007.06.003. Epub 2007 Jun 18.
8
Adenosine metabolism in Toxoplasma gondii: potential targets for chemotherapy.
Curr Pharm Des. 2007;13(6):581-97. doi: 10.2174/138161207780162836.
9
Mitochondrial drug targets in apicomplexan parasites.
Curr Drug Targets. 2007 Jan;8(1):49-60. doi: 10.2174/138945007779315632.

引用本文的文献

1
Model systems to study infections: an overview of scientific potential and impediments.
Front Cell Infect Microbiol. 2025 May 8;15:1572547. doi: 10.3389/fcimb.2025.1572547. eCollection 2025.
2
Effective factors in the pathogenesis of .
Heliyon. 2024 May 19;10(10):e31558. doi: 10.1016/j.heliyon.2024.e31558. eCollection 2024 May 30.
3
Whole-Genome Sequencing, Assembling, Annotation, and Comparative Analysis.
Microbiol Spectr. 2023 Aug 17;11(4):e0072123. doi: 10.1128/spectrum.00721-23. Epub 2023 Jul 11.
4
Hyperpolarizing DNA Nucleobases via NMR Signal Amplification by Reversible Exchange.
Molecules. 2023 Jan 25;28(3):1198. doi: 10.3390/molecules28031198.
7
Antiviral and Antimicrobial Nucleoside Derivatives: Structural Features and Mechanisms of Action.
Mol Biol. 2021;55(6):786-812. doi: 10.1134/S0026893321040105. Epub 2021 Dec 17.
8
An Uninvited Seat at the Dinner Table: How Apicomplexan Parasites Scavenge Nutrients from the Host.
Microorganisms. 2021 Dec 15;9(12):2592. doi: 10.3390/microorganisms9122592.
9
Molecular docking analysis of Plasmodium falciparum dihydroorotate dehydrogenase towards the design of effective inhibitors.
Bioinformation. 2020 Sep 30;16(9):672-678. doi: 10.6026/97320630016672. eCollection 2020.

本文引用的文献

1
Eosin B as a novel antimalarial agent for drug-resistant Plasmodium falciparum.
Antimicrob Agents Chemother. 2006 Sep;50(9):3132-41. doi: 10.1128/AAC.00621-06.
3
A systematic map of genetic variation in Plasmodium falciparum.
PLoS Pathog. 2006 Jun;2(6):e57. doi: 10.1371/journal.ppat.0020057. Epub 2006 Jun 23.
4
The plasma membrane permease PfNT1 is essential for purine salvage in the human malaria parasite Plasmodium falciparum.
Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9286-91. doi: 10.1073/pnas.0602590103. Epub 2006 Jun 2.
5
PCR-based discrimination of Toxoplasma gondii from pigs at an abattoir in Okinawa, Japan.
J Vet Med Sci. 2006 Apr;68(4):401-4. doi: 10.1292/jvms.68.401.
6
Therapeutic potential of folate uptake inhibition in Plasmodium falciparum.
Trends Parasitol. 2004 Mar;20(3):109-12. doi: 10.1016/j.pt.2003.12.005.
7
Transport of nucleosides across the Plasmodium falciparum parasite plasma membrane has characteristics of PfENT1.
Mol Microbiol. 2006 May;60(3):738-48. doi: 10.1111/j.1365-2958.2006.05125.x.
8
Cloning and preliminary characterization of the dihydroorotase from Toxoplasma gondii.
Mol Biochem Parasitol. 2006 Jul;148(1):93-8. doi: 10.1016/j.molbiopara.2006.03.003. Epub 2006 Mar 30.
9
The past, present and future of antifolates in the treatment of Plasmodium falciparum infection.
J Antimicrob Chemother. 2006 Jun;57(6):1043-54. doi: 10.1093/jac/dkl104. Epub 2006 Apr 14.
10
Quadruple mutations in dihydrofolate reductase of Plasmodium falciparum isolates from Car Nicobar Island, India.
Antimicrob Agents Chemother. 2006 Apr;50(4):1546-9. doi: 10.1128/AAC.50.4.1546-1549.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验