Ganapathy Ashwin, Wan Xiu-Feng, Wan Jinrong, Thelen Jay, Emerich David W, Stacey Gary, Xu Dong
Dept. of Comput. Sci., Missouri Univ., Columbia, MO, USA.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:3051-4. doi: 10.1109/IEMBS.2004.1403863.
We derive and validate a novel statistical model for confidence assessment of protein identification results using peptide mass fingerprint data. We simulate the digestion of the proteins and compare each peptide mass with the input mass. We compute scores from this matching of peptide and compute the distribution of scores for all the proteins in the database. Based on the distribution, we can provide the expectation value for a protein match in the database. We conclude that, given the complexity and noise of the data, the best method for effective confidence matching is using one scoring scheme for matching and another scoring scheme for confidence assessment.
我们推导并验证了一种使用肽质量指纹数据对蛋白质鉴定结果进行置信度评估的新型统计模型。我们模拟蛋白质的消化过程,并将每个肽质量与输入质量进行比较。我们根据肽的这种匹配计算得分,并计算数据库中所有蛋白质得分的分布。基于该分布,我们可以提供数据库中蛋白质匹配的期望值。我们得出结论,鉴于数据的复杂性和噪声,进行有效置信度匹配的最佳方法是使用一种评分方案进行匹配,另一种评分方案进行置信度评估。