Low David A, Shibasaki Manabu, Davis Scott L, Keller David M, Crandall Craig G
Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, TX 75231, USA.
J Appl Physiol (1985). 2007 May;102(5):1839-43. doi: 10.1152/japplphysiol.01181.2006. Epub 2007 Feb 1.
We tested the hypothesis that local heating-induced nitric oxide (NO) production attenuates cutaneous vasoconstrictor responsiveness. Eleven subjects (6 men, 5 women) had four microdialysis membranes placed in forearm skin. Two membranes were perfused with 10 mM of N(G)-nitro-L-arginine (L-NAME) and two with Ringer solution (control), and all sites were locally heated to 34 degrees C. Subjects then underwent 5 min of 60-mmHg lower body negative pressure (LBNP). Two sites (a control and an L-NAME site) were then heated to 39 degrees C, while the other two sites were heated to 42 degrees C. At the L-NAME sites, skin blood flow was elevated using 0.75-2 mg/ml of adenosine in the perfusate solution (Adn + L-NAME) to a similar level relative to control sites. Subjects then underwent another 5 min of 60-mmHg LBNP. At 34 degrees C, cutaneous vascular conductance (CVC) decreased (Delta) similarly at both control and L-NAME sites during LBNP (Delta7.9 +/- 3.0 and Delta3.4 +/- 0.8% maximum, respectively; P > 0.05). The reduction in CVC to LBNP was also similar between control and Adn + L-NAME sites at 39 degrees C (control Delta11.4 +/- 2.5 vs. Adn + L-NAME Delta7.9 +/- 2.0% maximum; P > 0.05) and 42 degrees C (control Delta1.9 +/- 2.7 vs. Adn + L-NAME Delta 4.2 +/- 2.7% maximum; P > 0.05). However, the decrease in CVC at 42 degrees C, regardless of site, was smaller than at 39 degrees C (P < 0.05). These results do not support the hypothesis that local heating-induced NO production attenuates cutaneous vasoconstrictor responsiveness during high levels of LBNP. However, elevated local temperature, per se, attenuates cutaneous vasoconstrictor responsiveness to LBNP, presumably through non-nitric oxide mechanisms.
我们检验了这样一个假设,即局部加热诱导的一氧化氮(NO)生成会减弱皮肤血管收缩反应性。11名受试者(6名男性,5名女性)在前臂皮肤放置了4个微透析膜。两个膜用10 mM的N(G)-硝基-L-精氨酸(L-NAME)灌注,另外两个用林格溶液(对照)灌注,所有部位均局部加热至34摄氏度。然后受试者接受5分钟60 mmHg的下体负压(LBNP)。之后,两个部位(一个对照部位和一个L-NAME部位)加热至39摄氏度,另外两个部位加热至42摄氏度。在L-NAME部位,使用灌注液中0.75 - 2 mg/ml的腺苷(Adn + L-NAME)使皮肤血流升高至与对照部位相似的水平。然后受试者再接受5分钟60 mmHg的LBNP。在34摄氏度时,LBNP期间对照部位和L-NAME部位的皮肤血管传导性(CVC)下降情况相似(分别为最大下降7.9±3.0%和3.4±0.8%;P>0.05)。在39摄氏度时,对照部位和Adn + L-NAME部位对LBNP的CVC降低情况也相似(对照最大下降11.4±2.5% vs. Adn + L-NAME最大下降7.9±2.0%;P>0.05),在42摄氏度时同样如此(对照最大下降1.9±2.7% vs. Adn + L-NAME最大下降4.2±2.7%;P>0.05)。然而,无论部位如何,42摄氏度时CVC的下降幅度都小于39摄氏度时(P<0.05)。这些结果不支持局部加热诱导的NO生成会在高水平LBNP期间减弱皮肤血管收缩反应性这一假设。然而,局部温度升高本身会减弱皮肤对LBNP的血管收缩反应性,推测是通过非一氧化氮机制实现的。