Howes A J, Radke C J
Department of Chemical Engineering, University of California, Berkeley, California 94720-1462, USA.
Langmuir. 2007 Feb 13;23(4):1835-44. doi: 10.1021/la062419u.
We present Monte Carlo simulations of nonionic surfactant adsorption at the liquid/vapor interface of a monatomic solvent. All molecules in the system, solvent and surfactant, are characterized by the Lennard-Jones (LJ) potential using differing interaction parameters. Surfactant molecules consist of an amphiphilic chain with a solvophilic head and a solvophobic tail. Adjacent atoms along the surfactant chain are connected by finitely extensible harmonic springs. Solvent molecules move via the Metropolis random-walk algorithm, whereas surfactant molecules move according to the continuum configurational bias Monte Carlo (CBMC) method. We generate quantitative thermodynamic adsorption and surface tension isotherms in addition to surfactant radius of gyration, tilt angles, and potentials of mean force. Surface tension simulations compared to those calculated from the simulated adsorbed amounts and the Gibbs adsorption isotherm agree confirming equilibrium in our simulations. We find that the classical Langmuir isotherm is obeyed for our LJ surfactants over the range of head and tail lengths studied. Although simulated surfactant chains in the bulk solution exhibit random orientations, surfactant chains at the interface orient roughly perpendicular and the tails elongate compared to bulk chains even in the submonolayer adsorption regime. At a critical surfactant concentration, designated as the critical aggregation concentration (CAC), we find aggregates in the solution away from the interface. At higher concentrations, simulated surface tensions remain practically constant. Using the simulated potential of mean force in the submonolayer regime and an estimate of the surfactant footprint at the CAC, we predict a priori the Langmuir adsorption constant, KL, and the maximum monolayer adsorption, Gammam. Adsorption is driven not by proclivity of the surfactant for the interface, but by the dislike of the surfactant tails for the solvent, that is by a "solvophobic" effect. Accordingly, we establish that a coarse-grained LJ surfactant system mimics well the expected equilibrium behavior of aqueous nonionic surfactants adsorbing at the air/water interface.
我们展示了单原子溶剂液/气界面处非离子表面活性剂吸附的蒙特卡罗模拟。系统中的所有分子,包括溶剂和表面活性剂,都使用不同的相互作用参数通过 Lennard-Jones(LJ)势来表征。表面活性剂分子由具有亲溶剂头部和疏溶剂尾部的两亲链组成。沿表面活性剂链的相邻原子通过有限可延伸的谐振子弹簧连接。溶剂分子通过 Metropolis 随机游走算法移动,而表面活性剂分子根据连续构型偏差蒙特卡罗(CBMC)方法移动。除了表面活性剂的回转半径、倾斜角和平均力势之外,我们还生成了定量的热力学吸附和表面张力等温线。将表面张力模拟结果与根据模拟吸附量和吉布斯吸附等温线计算得到的结果进行比较,二者相符,这证实了我们模拟中的平衡状态。我们发现在所研究的头部和尾部长度范围内,我们的 LJ 表面活性剂遵循经典的朗缪尔等温线。尽管本体溶液中模拟的表面活性剂链呈现随机取向,但即使在亚单层吸附区域,界面处的表面活性剂链大致垂直取向,并且与本体链相比尾部伸长。在一个临界表面活性剂浓度,即临界聚集浓度(CAC)下,我们在远离界面的溶液中发现了聚集体。在更高浓度下,模拟的表面张力实际上保持恒定。利用亚单层区域模拟的平均力势以及 CAC 处表面活性剂覆盖面积的估计值,我们预先预测了朗缪尔吸附常数 KL 和最大单层吸附量 Γm。吸附不是由表面活性剂对界面的倾向驱动的,而是由表面活性剂尾部对溶剂的厌恶驱动的,即由“疏溶剂”效应驱动。因此,我们确定一个粗粒度的 LJ 表面活性剂系统很好地模拟了水性非离子表面活性剂在空气/水界面吸附的预期平衡行为。