Suppr超能文献

通过在无序状态下的蒙特卡罗程序,探究一维、二维、三维随机介质中定向聚合物基态能量分布的尾部情况。

Probing the tails of the ground-state energy distribution for the directed polymer in a random medium of dimension d=1,2,3 via a Monte Carlo procedure in the disorder.

作者信息

Monthus Cécile, Garel Thomas

机构信息

Service de Physique Théorique, CEA/DSM/SPhT, Unité de recherche associée au CNRS, 91191 Gif-sur-Yvette cedex, France.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 1):051109. doi: 10.1103/PhysRevE.74.051109. Epub 2006 Nov 13.

Abstract

In order to probe with high precision the tails of the ground-state energy distribution of disordered spin systems, Körner, Katzgraber, and Hartmann have recently proposed an importance-sampling Monte Carlo Markov chain in the disorder. In this paper, we combine their Monte Carlo procedure in the disorder with exact transfer matrix calculations in each sample to measure the negative tail of ground-state energy distribution Pd(E0) for the directed polymer in a random medium of dimension d=1,2,3. In d=1, we check the validity of the algorithm by a direct comparison with the exact result, namely, the Tracy-Widom distribution. In dimensions d=2 and d=3, we measure the negative tail up to ten standard deviations, which correspond to probabilities of order Pd(E0) approximately 10(-22). Our results are in agreement with Zhang's argument, stating that the negative tail exponent eta(d) of the asymptotic behavior lnPd(E0) approximately -|E0|eta(d) as E0-->-infinity is directly related to the fluctuation exponent theta(d) [which governs the fluctuations DeltaE0(L) approximately Ltheta(d) of the ground-state energy E0 for polymers of length L] via the simple formula eta(d)=1/[1-theta(d)]. Throughout the paper, we comment on the similarities and differences with spin glasses.

摘要

为了高精度探测无序自旋系统基态能量分布的尾部,科尔纳、卡茨格拉伯和哈特曼最近提出了一种在无序中进行重要性抽样的蒙特卡罗马尔可夫链方法。在本文中,我们将他们在无序中的蒙特卡罗方法与每个样本中的精确转移矩阵计算相结合,以测量一维、二维和三维随机介质中定向聚合物基态能量分布(P_d(E_0))的负尾部。在一维情况下,我们通过与精确结果(即特雷西 - 威多姆分布)直接比较来检验算法的有效性。在二维和三维情况下,我们测量负尾部直至十个标准差,这对应于概率约为(P_d(E_0)\approx10^{-22})的量级。我们的结果与张的观点一致,即当(E_0\to -\infty)时,渐近行为(\ln P_d(E_0)\approx -|E_0|^{\eta(d)})的负尾部指数(\eta(d))通过简单公式(\eta(d)=1/[1 - \theta(d)])与涨落指数(\theta(d))(它控制长度为(L)的聚合物基态能量(E_0)的涨落(\Delta E_0(L)\approx L^{\theta(d)}))直接相关。在整篇论文中,我们评论了与自旋玻璃的异同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验