Redner S, Petersen Mark R
Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Dec;74(6 Pt 1):061114. doi: 10.1103/PhysRevE.74.061114. Epub 2006 Dec 22.
We theoretically study the statistics of record-breaking daily temperatures and validate these predictions using both Monte Carlo simulations and 126 years of available data from the city of Philadelphia. Using extreme statistics, we derive the number and the magnitude of record temperature events, based on the observed Gaussian daily temperature distribution in Philadelphia, as a function of the number of years of observation. We then consider the case of global warming, where the mean temperature systematically increases with time. Over the 126-year time range of observations, we argue that the current warming rate is insufficient to measurably influence the frequency of record temperature events, a conclusion that is supported by numerical simulations and by the Philadelphia data. We also study the role of correlations between temperatures on successive days and find that they do not affect the frequency or magnitude of record temperature events.
我们从理论上研究了破纪录日气温的统计数据,并使用蒙特卡罗模拟和来自费城的126年可用数据对这些预测进行了验证。利用极值统计,我们根据在费城观测到的高斯日气温分布,得出了创纪录温度事件的数量和幅度,作为观测年限的函数。然后我们考虑全球变暖的情况,即平均温度随时间系统性上升。在126年的观测时间范围内,我们认为当前的变暖速率不足以对创纪录温度事件的频率产生可测量的影响,这一结论得到了数值模拟和费城数据的支持。我们还研究了连续几天温度之间相关性的作用,发现它们不会影响创纪录温度事件的频率或幅度。