Suppr超能文献

Granular elasticity: general considerations and the stress dip in sand piles.

作者信息

Krimer Dmitry O, Pfitzner Michael, Bräuer Kurt, Jiang Yimin, Liu Mario

机构信息

Theoretische Physik, Universität Tübingen, 72076 Tübingen, Germany.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Dec;74(6 Pt 1):061310. doi: 10.1103/PhysRevE.74.061310. Epub 2006 Dec 27.

Abstract

Granular materials are predominantly plastic, incrementally nonlinear, preparation-dependent, and anisotropic under shear. Nevertheless, their static stress distribution is well accounted for, in the whole range up to the point of failure, by a judiciously tailored isotropic nonanalytic elasticity theory termed granular elasticity. The first purpose of this paper is to carefully expound this view. Then granular elasticity is employed to consider the stress distribution in two-dimensional sand piles (or sand wedges). Starting from a uniform density, the pressure at the bottom of the pile is found to show a single central peak. It turns into a pressure dip, if some density inhomogeneity, with the center being less compact, is assumed. These two pressure distributions are remarkably similar to recent measurements, made in piles obtained, respectively, by rainlike pouring and funneling. In an accompanying paper, the stress distributions in silos and under point loads, calculated using the same method, are also found to agree with experiments.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验