Balankin Alexander S, Huerta Orlando Susarrey, Cortes Montes de Oca Rolando, Ochoa Didier Samayoa, Martínez Trinidad José, Mendoza Maribel A
Grupo "Mecánica Fractal," Instituto Politécnico Nacional, México D.F., 07738 Mexico.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Dec;74(6 Pt 1):061602. doi: 10.1103/PhysRevE.74.061602. Epub 2006 Dec 7.
We study the effect of folding ridges on the scaling properties of randomly crumpled sheets of different kinds of paper in the folded and unfolded states. We found that the mean ridge length scales with the sheet size with the scaling exponent mu determined by the competition between bending and stretching deformations in the folded sheet. This scaling determines the mass fractal dimension of randomly folded balls D{M}=2/mu. We also found that surfaces of crumpled balls, as well as unfolded sheets, both display self-affine invariance with zeta=nu{ph}, if mu < or =nu{ph} , where nu{ph}=34 is the size exponent for crumpled phantom membrane, or both exhibit an intrinsically anomalous roughness characterized by the universal local roughness exponent zeta=0.72+/-0.04 and the material dependent global roughness exponent alpha=mu, when mu>nu{ph}. The physical implications of these findings are discussed.
我们研究了折叠褶皱对不同种类纸张在折叠和未折叠状态下随机起皱薄片的标度性质的影响。我们发现,平均褶皱长度与薄片尺寸成比例,其标度指数μ由折叠薄片中弯曲和拉伸变形之间的竞争决定。这种标度决定了随机折叠球的质量分形维数D{M}=2/μ。我们还发现,如果μ≤ν{ph},其中ν{ph}=34是皱缩幻影膜的尺寸指数,那么皱缩球的表面以及未折叠薄片都表现出自仿射不变性,ζ=ν{ph};或者当μ>ν{ph}时,两者都表现出由通用局部粗糙度指数ζ=0.72±0.04和与材料相关的全局粗糙度指数α=μ所表征的内在异常粗糙度。我们讨论了这些发现的物理意义。