Yue Yong, Croitoru Mihai M, Bidani Akhil, Zwischenberger Joseph B, Clark John W
Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005 USA.
Conf Proc IEEE Eng Med Biol Soc. 2005;2005:6429-32. doi: 10.1109/IEMBS.2005.1615970.
This paper introduces a novel multiscale nonlinear wavelet diffusion (MNWD) method for ultrasound speckle suppression and edge enhancement. It considers wavelet diffusion as an approximation to nonlinear diffusion within the framework of the dyadic wavelet transform. Consequently, this knowledge is exploited in the design of a speckle suppression filter with an edge enhancement feature. MNWD takes advantage of the sparsity and multiresolution properties of wavelet, and the iterative edge enhancement feature of nonlinear diffusion. In our algorithm, speckle is suppressed by employing the iterative multiscale diffusion on the wavelet coefficients, while the edges of the image are enhanced by using an iterative signal compensation process. We validate the proposed method using synthetic and real echocardiographic images. Performance improvement over other traditional denoising filters is quantified in terms of noise suppression and structural preservation indices. The application of the proposed method is demonstrated by the segmentation of the echocardiographic image using the active contour.
本文介绍了一种用于超声散斑抑制和边缘增强的新型多尺度非线性小波扩散(MNWD)方法。它将小波扩散视为二进小波变换框架内非线性扩散的一种近似。因此,这一知识被用于设计具有边缘增强功能的散斑抑制滤波器。MNWD利用了小波的稀疏性和多分辨率特性,以及非线性扩散的迭代边缘增强特性。在我们的算法中,通过对小波系数进行迭代多尺度扩散来抑制散斑,同时通过迭代信号补偿过程增强图像边缘。我们使用合成和真实的超声心动图图像验证了所提出的方法。通过噪声抑制和结构保留指标量化了与其他传统去噪滤波器相比的性能提升。通过使用活动轮廓对超声心动图图像进行分割,展示了所提出方法的应用。