Haiwei Pan, Li Jianzhong, Wei Zhang
Dept. of Comput. Sci., Harbin Inst. of Technol.
Conf Proc IEEE Eng Med Biol Soc. 2005;2005:3308-11. doi: 10.1109/IEMBS.2005.1617184.
Image mining is more than just an extension of data mining to image domain but an interdisciplinary endeavor. Very few people have systematically investigated this field. Clustering medical images for intelligent decision support is an important part in domain-specific application image mining because there are several technical aspects which make this problem challenging. In this paper, we firstly quantify the domain knowledge about brain image, and then incorporate this quantified measurement into the clustering algorithm. Our algorithm contains two parts: (1) clustering regions of interest (ROI) detected from brain image; (2) clustering images based on the similarity of ROI. We apply the method to cluster brain images and present results to demonstrate its usefulness and effectiveness.
图像挖掘不仅仅是将数据挖掘扩展到图像领域,而是一项跨学科的工作。很少有人对这个领域进行过系统的研究。为智能决策支持对医学图像进行聚类是特定领域应用图像挖掘中的一个重要部分,因为有几个技术方面使得这个问题具有挑战性。在本文中,我们首先量化关于脑图像的领域知识,然后将这种量化测量纳入聚类算法。我们的算法包括两个部分:(1)对从脑图像中检测到的感兴趣区域(ROI)进行聚类;(2)基于ROI的相似性对图像进行聚类。我们将该方法应用于脑图像聚类,并展示结果以证明其有用性和有效性。