Suppr超能文献

骨形态发生蛋白4、干细胞因子和低氧共同调节小鼠应激性红系祖细胞的扩增。

BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors.

作者信息

Perry John M, Harandi Omid F, Paulson Robert F

机构信息

Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Blood. 2007 May 15;109(10):4494-502. doi: 10.1182/blood-2006-04-016154. Epub 2007 Feb 6.

Abstract

The erythroid response to acute anemia relies on the rapid expansion in the spleen of a specialized population of erythroid progenitors termed stress BFU-E. This expansion requires BMP4/Madh5-dependent signaling in vivo; however, in vitro, BMP4 alone cannot recapitulate the expansion of stress BFU-E observed in vivo, which suggests that other signals are required. In this report we show that mutation of the Kit receptor results in a severe defect in the expansion of stress BFU-E, indicating a role for the Kit/SCF signaling pathway in stress erythropoiesis. In vitro analysis showed that BMP4 and SCF are necessary for the expansion of stress BFU-E, but only when spleen cells were cultured in BMP4 + SCF at low-oxygen concentrations did we recapitulate the expansion of stress BFU-E observed in vivo. Culturing spleen cells in BMP4, SCF under hypoxic conditions resulted in the preferential expansion of erythroid progenitors characterized by the expression of Kit, CD71, and TER119. This expression pattern is also seen in stress erythroid progenitors isolated from patients with sickle cell anemia and patients with beta-thalassemia. Taken together these data demonstrate that SCF and hypoxia synergize with BMP4 to promote the expansion and differentiation of stress BFU-E during the recovery from acute anemia.

摘要

红系对急性贫血的反应依赖于一种称为应激性爆式红系集落形成单位(stress BFU-E)的红系祖细胞特殊群体在脾脏中的快速扩增。这种扩增在体内需要骨形态发生蛋白4(BMP4)/ Mothers against decapentaplegic homolog 5(Madh5)依赖性信号传导;然而,在体外,单独的BMP4不能重现体内观察到的应激性BFU-E的扩增,这表明还需要其他信号。在本报告中,我们表明Kit受体的突变导致应激性BFU-E扩增出现严重缺陷,表明Kit/干细胞因子(SCF)信号通路在应激性红细胞生成中起作用。体外分析表明,BMP4和SCF是应激性BFU-E扩增所必需的,但只有当脾细胞在低氧浓度下于BMP4 + SCF中培养时,我们才能重现体内观察到的应激性BFU-E的扩增。在缺氧条件下于BMP4、SCF中培养脾细胞导致以Kit、CD71和TER119表达为特征的红系祖细胞优先扩增。这种表达模式在从镰状细胞贫血患者和β地中海贫血患者中分离出的应激性红系祖细胞中也可见。综上所述,这些数据表明,SCF和缺氧与BMP4协同作用,以促进急性贫血恢复过程中应激性BFU-E的扩增和分化。

相似文献

1
BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors.
Blood. 2007 May 15;109(10):4494-502. doi: 10.1182/blood-2006-04-016154. Epub 2007 Feb 6.
4
BMP4 and Madh5 regulate the erythroid response to acute anemia.
Blood. 2005 Apr 1;105(7):2741-8. doi: 10.1182/blood-2004-02-0703. Epub 2004 Dec 9.
5
Inhibition of Smad5 in human hematopoietic progenitors blocks erythroid differentiation induced by BMP4.
Blood Cells Mol Dis. 2002 Mar-Apr;28(2):221-33. doi: 10.1006/bcmd.2002.0487.
7
Changes in c-Kit expression and effects of SCF during differentiation of human erythroid progenitor cells.
Br J Haematol. 1995 Sep;91(1):30-6. doi: 10.1111/j.1365-2141.1995.tb05240.x.
8
BMP4/Smad5 dependent stress erythropoiesis is required for the expansion of erythroid progenitors during fetal development.
Dev Biol. 2008 May 1;317(1):24-35. doi: 10.1016/j.ydbio.2008.01.047. Epub 2008 Feb 15.
9
Maintenance of the BMP4-dependent stress erythropoiesis pathway in the murine spleen requires hedgehog signaling.
Blood. 2009 Jan 22;113(4):911-8. doi: 10.1182/blood-2008-03-147892. Epub 2008 Oct 16.

引用本文的文献

2
Regeneration alters open chromatin and -regulatory landscape of erythroid precursors.
Genome Res. 2025 Jul 1;35(7):1518-1529. doi: 10.1101/gr.279949.124.
3
Microenvironmental dynamics in steady-state and stress erythropoiesis.
Blood Sci. 2025 Feb 11;7(1):e00219. doi: 10.1097/BS9.0000000000000219. eCollection 2025 Jan.
4
Immunoregulation role of the erythroid cells.
Front Immunol. 2024 Oct 15;15:1466669. doi: 10.3389/fimmu.2024.1466669. eCollection 2024.
6
Normal and dysregulated crosstalk between iron metabolism and erythropoiesis.
Elife. 2023 Aug 14;12:e90189. doi: 10.7554/eLife.90189.
7
Editorial: Stress erythropoiesis.
Front Physiol. 2023 Feb 22;14:1165315. doi: 10.3389/fphys.2023.1165315. eCollection 2023.
8
The role of specialized cell cycles during erythroid lineage development: insights from single-cell RNA sequencing.
Int J Hematol. 2022 Aug;116(2):163-173. doi: 10.1007/s12185-022-03406-9. Epub 2022 Jun 27.
9
Targeting Stress Erythropoiesis Pathways in Cancer.
Front Physiol. 2022 May 25;13:844042. doi: 10.3389/fphys.2022.844042. eCollection 2022.

本文引用的文献

2
Core erythropoietin receptor signals for late erythroblast development.
Blood. 2006 Apr 1;107(7):2662-72. doi: 10.1182/blood-2005-02-0684. Epub 2005 Dec 6.
4
Proline hydroxylation and gene expression.
Annu Rev Biochem. 2005;74:115-28. doi: 10.1146/annurev.biochem.74.082803.133142.
5
BMP4 and Madh5 regulate the erythroid response to acute anemia.
Blood. 2005 Apr 1;105(7):2741-8. doi: 10.1182/blood-2004-02-0703. Epub 2004 Dec 9.
6
Prospective isolation and global gene expression analysis of the erythrocyte colony-forming unit (CFU-E).
Blood. 2005 Mar 1;105(5):1937-45. doi: 10.1182/blood-2004-09-3459. Epub 2004 Nov 2.
7
The Rb tumor suppressor is required for stress erythropoiesis.
EMBO J. 2004 Oct 27;23(21):4319-29. doi: 10.1038/sj.emboj.7600432. Epub 2004 Sep 30.
8
Regulation of transcription and translation by hypoxia.
Cancer Biol Ther. 2004 Jun;3(6):492-7. doi: 10.4161/cbt.3.6.1010. Epub 2004 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验