Strauss Martin, Grey Martin, Henriques João Antonio Pegas, Brendel Martin
Institut für Mikrobiologie der J. W. Goethe-Universität, Frankfurt am Main, Germany.
Curr Genet. 2007 Apr;51(4):221-31. doi: 10.1007/s00294-007-0120-7. Epub 2007 Feb 8.
The PSO3 gene of Saccharomyces cerevisiae was molecularly cloned by complementing the cold-sensitivity phenotype of a pso3-1 mutant and was found to be allelic to RNR4, encoding one of the two DNA damage-inducible small subunits of the ribonucleotide reductase (RNR) complex. Compared to a rnr4Delta mutant that allows only very little mutation induction at very low doses of 254(nm) ultraviolet light (UVC), the pso3-1 mutant allele confers leakiness in that it permits some DNA damage-induced mutagenesis at low doses of UVC. Similarly, the pso3 mutant is slightly less sensitive to UVC than an rnr4Delta mutant. Cloning and sequencing of the RNR4 locus of the pso3-1 mutant revealed that its intermediate phenotype is attributable to a G --> A transition at nucleotide 352, leading to replacement of glycine by arginine [G118R] in the mutant's protein. Both RNR4 mutant alleles confer significantly less sensitivity to UVC than mutant alleles of non-UVC-mutable REV3, indicating that, apart from nucleotide excision repair, RAD6-dependent error-free DNA repair may still be functional. The phenotype of a strongly reduced UVC-induced mutagenesis for rnr4 mutant alleles has not yet been described; it suggests the importance of this gene for a fully functional RNR providing correct amounts of DNA precursor molecules, thereby, allowing translesion synthesis (error-prone) of UVC-damaged DNA. Stationary phase cells of the rnr4Delta mutant, but not of the original pso3-1 mutant, are swollen with a fourfold to eightfold increase in volume. The central role of RNR in DNA precursor metabolism and its complex regulation allow for several modes of suppression that may influence the phenotypes of RNR4 mutants, especially those containing the leaky pso3-1 mutant allele.
通过互补pso3 - 1突变体的冷敏表型,对酿酒酵母的PSO3基因进行了分子克隆,发现它与RNR4等位,RNR4编码核糖核苷酸还原酶(RNR)复合物中两个DNA损伤诱导小亚基之一。与仅在非常低剂量的254纳米紫外线(UVC)下允许极少突变诱导的rnr4Delta突变体相比,pso3 - 1突变等位基因具有渗漏性,因为它在低剂量UVC下允许一些DNA损伤诱导的诱变。同样,pso3突变体对UVC的敏感性略低于rnr4Delta突变体。对pso3 - 1突变体的RNR4基因座进行克隆和测序表明,其中间表型归因于核苷酸352处的G→A转变,导致突变体蛋白质中的甘氨酸被精氨酸取代[G118R]。与非UVC可突变的REV3突变等位基因相比,两个RNR4突变等位基因对UVC的敏感性均显著降低,这表明除了核苷酸切除修复外,RAD6依赖性无差错DNA修复可能仍然具有功能。rnr4突变等位基因导致UVC诱导的诱变显著减少的表型尚未见报道;这表明该基因对于提供正确数量的DNA前体分子从而允许UVC损伤DNA的跨损伤合成(易出错)的全功能RNR非常重要。rnr4Delta突变体的静止期细胞会肿胀,体积增加四倍至八倍,而原始pso3 - 1突变体的静止期细胞则不会。RNR在DNA前体代谢中的核心作用及其复杂调控允许几种抑制模式,这些模式可能影响RNR4突变体的表型,特别是那些含有渗漏性pso3 - 1突变等位基因的突变体。