Suppr超能文献

非小细胞肺癌中表皮生长因子受体拮抗剂反应的分子预测指标

Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer.

作者信息

Sequist Lecia V, Bell Daphne W, Lynch Thomas J, Haber Daniel A

机构信息

Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA.

出版信息

J Clin Oncol. 2007 Feb 10;25(5):587-95. doi: 10.1200/JCO.2006.07.3585.

Abstract

In the last 5 years the epidermal growth factor receptor (EGFR) has emerged as one of the most important targets for drug development in oncology. Monoclonal antibodies targeting the external domain of EGFR have been shown to have clinical benefit in colorectal and head and neck cancer when combined with chemotherapy and/or radiation. Small molecules that inhibit the tyrosine kinase (TK) domain of EGFR have become critical new weapons in the treatment of non-small-cell lung cancer (NSCLC). The discovery that mutations in the TK domain are associated with dramatic and sustained responses to EGFR TK inhibitors (TKIs) has allowed the design of trials to test these agents as potential first-line therapies and has provided a fascinating window into the future of genotype-directed targeted therapy. Recent advances in understanding the biologic basis of acquired resistance to these agents have great potential to improve the clinical effectiveness of this class of drugs. This review summarizes the biology of EGFR in NSCLC, the clinical and molecular predictors of benefit from treatment with EGFR TKIs, the use of patient-specific molecular profiling, and future directions of clinical and basic scientific research.

摘要

在过去5年里,表皮生长因子受体(EGFR)已成为肿瘤学药物研发中最重要的靶点之一。靶向EGFR胞外结构域的单克隆抗体与化疗和/或放疗联合使用时,已显示出对结直肠癌和头颈癌具有临床益处。抑制EGFR酪氨酸激酶(TK)结构域的小分子已成为治疗非小细胞肺癌(NSCLC)的关键新武器。TK结构域中的突变与对EGFR TK抑制剂(TKIs)产生显著且持久的反应相关这一发现,使得开展试验将这些药物作为潜在的一线治疗方案进行测试成为可能,并为基因型导向的靶向治疗的未来提供了一个引人入胜的窗口。在理解对这些药物获得性耐药的生物学基础方面的最新进展,极有可能提高这类药物的临床疗效。本综述总结了NSCLC中EGFR的生物学特性、EGFR TKIs治疗获益的临床和分子预测指标、患者特异性分子谱分析的应用,以及临床和基础科研的未来方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验