Suppr超能文献

相反的生长因子信号控制秀丽隐杆线虫肌肉中的蛋白质降解。

Opposed growth factor signals control protein degradation in muscles of Caenorhabditis elegans.

作者信息

Szewczyk Nathaniel J, Peterson Brant K, Barmada Sami J, Parkinson Leah P, Jacobson Lewis A

机构信息

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.

出版信息

EMBO J. 2007 Feb 21;26(4):935-43. doi: 10.1038/sj.emboj.7601540. Epub 2007 Feb 8.

Abstract

In addition to contractile function, muscle provides a metabolic buffer by degrading protein in times of organismal need. Protein is also degraded during adaptive muscle remodeling upon exercise, but extreme degradation in diverse clinical conditions can compromise function(s) and threaten life. Here, we show how two independent signals interact to control protein degradation. In striated muscles of Caenorhabditis elegans, reduction of insulin-like signaling via DAF-2 insulin/IGF receptor or its intramuscular effector PtdIns-3-kinase (PI3K) causes unexpected activation of MAP kinase (MAPK), consequent activation of pre-existing systems for protein degradation, and progressive impairment of mobility. Degradation is prevented by mutations that increase signal downstream of PI3K or by disruption of autocrine signal from fibroblast growth factor (FGF) via the FGF receptor and its effectors in the Ras-MAPK pathway. Thus, the activity of constitutive protein degradation systems in normal muscle is minimized by a balance between directly interacting signaling pathways, implying that physiological, pathological, or therapeutic alteration of this balance may contribute to muscle remodeling or wasting.

摘要

除了收缩功能外,肌肉在机体需要时通过降解蛋白质提供代谢缓冲。运动时适应性肌肉重塑过程中蛋白质也会降解,但在多种临床情况下的极端降解会损害功能并威胁生命。在此,我们展示了两个独立信号如何相互作用来控制蛋白质降解。在秀丽隐杆线虫的横纹肌中,通过DAF-2胰岛素/IGF受体或其肌内效应器磷脂酰肌醇-3激酶(PI3K)降低胰岛素样信号传导会导致丝裂原活化蛋白激酶(MAPK)意外激活,进而激活预先存在的蛋白质降解系统,并逐渐损害运动能力。通过增加PI3K下游信号的突变或通过成纤维细胞生长因子(FGF)经由FGF受体及其在Ras-MAPK途径中的效应器的自分泌信号的破坏来防止降解。因此,正常肌肉中组成型蛋白质降解系统的活性通过直接相互作用的信号通路之间的平衡而最小化,这意味着这种平衡的生理、病理或治疗改变可能有助于肌肉重塑或萎缩。

相似文献

1
Opposed growth factor signals control protein degradation in muscles of Caenorhabditis elegans.
EMBO J. 2007 Feb 21;26(4):935-43. doi: 10.1038/sj.emboj.7601540. Epub 2007 Feb 8.
2
Signal-transduction networks and the regulation of muscle protein degradation.
Int J Biochem Cell Biol. 2005 Oct;37(10):1997-2011. doi: 10.1016/j.biocel.2005.02.020. Epub 2005 Mar 14.
4
LET-60 RAS modulates effects of insulin/IGF-1 signaling on development and aging in Caenorhabditis elegans.
Aging Cell. 2005 Oct;4(5):235-45. doi: 10.1111/j.1474-9726.2005.00166.x.
5
Insulin-like signaling negatively regulates muscle arm extension through DAF-12 in Caenorhabditis elegans.
Dev Biol. 2008 Jun 1;318(1):153-61. doi: 10.1016/j.ydbio.2008.03.019. Epub 2008 Mar 20.
9
Skeletal muscle hypertrophy and atrophy signaling pathways.
Int J Biochem Cell Biol. 2005 Oct;37(10):1974-84. doi: 10.1016/j.biocel.2005.04.018.
10
Caenorhabditis elegans SDF-9 enhances insulin/insulin-like signaling through interaction with DAF-2.
Genetics. 2007 Sep;177(1):661-6. doi: 10.1534/genetics.107.076703. Epub 2007 Jul 29.

引用本文的文献

1
Eldecalcitol prevents muscle loss by suppressing PI3K/AKT/FOXOs pathway in orchiectomized mice.
Front Pharmacol. 2022 Oct 28;13:1018480. doi: 10.3389/fphar.2022.1018480. eCollection 2022.
2
Triiodothyronine (T3) enhances lifespan and protects against oxidative stress via activation of Klotho in Caenorhabditis elegans.
Biogerontology. 2021 Aug;22(4):397-413. doi: 10.1007/s10522-021-09923-0. Epub 2021 Apr 13.
3
Systemic muscle wasting and coordinated tumour response drive tumourigenesis.
Nat Commun. 2020 Sep 16;11(1):4653. doi: 10.1038/s41467-020-18502-9.
4
Greater loss of mitochondrial function with ageing is associated with earlier onset of sarcopenia in .
Aging (Albany NY). 2018 Nov 19;10(11):3382-3396. doi: 10.18632/aging.101654.
5
Functional phosphatome requirement for protein homeostasis, networked mitochondria, and sarcomere structure in C. elegans muscle.
J Cachexia Sarcopenia Muscle. 2017 Aug;8(4):660-672. doi: 10.1002/jcsm.12196. Epub 2017 May 15.
6
FOXO/DAF-16 Activation Slows Down Turnover of the Majority of Proteins in C. elegans.
Cell Rep. 2016 Sep 13;16(11):3028-3040. doi: 10.1016/j.celrep.2016.07.088.
7
Degenerin channel activation causes caspase-mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle.
J Cachexia Sarcopenia Muscle. 2016 May;7(2):181-92. doi: 10.1002/jcsm.12040. Epub 2015 Jun 4.
8
Methods to assess subcellular compartments of muscle in C. elegans.
J Vis Exp. 2014 Nov 13(93):e52043. doi: 10.3791/52043.

本文引用的文献

1
Modeling polyglutamine pathogenesis in C. elegans.
Methods Enzymol. 2006;412:256-82. doi: 10.1016/S0076-6879(06)12016-9.
3
UNC-51-like kinase regulation of fibroblast growth factor receptor substrate 2/3.
Cell Signal. 2007 Jan;19(1):177-84. doi: 10.1016/j.cellsig.2006.06.003. Epub 2006 Aug 2.
4
Protein synthesis upon acute nutrient restriction relies on proteasome function.
Science. 2005 Dec 23;310(5756):1960-3. doi: 10.1126/science.1121925.
5
Signal-transduction networks and the regulation of muscle protein degradation.
Int J Biochem Cell Biol. 2005 Oct;37(10):1997-2011. doi: 10.1016/j.biocel.2005.02.020. Epub 2005 Mar 14.
6
Post burn muscle wasting and the effects of treatments.
Int J Biochem Cell Biol. 2005 Oct;37(10):1948-61. doi: 10.1016/j.biocel.2005.05.009.
7
Skeletal muscle hypertrophy and atrophy signaling pathways.
Int J Biochem Cell Biol. 2005 Oct;37(10):1974-84. doi: 10.1016/j.biocel.2005.04.018.
8
Mechanical signals, IGF-I gene splicing, and muscle adaptation.
Physiology (Bethesda). 2005 Aug;20:232-8. doi: 10.1152/physiol.00004.2005.
9
Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease.
Int J Biochem Cell Biol. 2005 Oct;37(10):2047-63. doi: 10.1016/j.biocel.2005.03.002.
10
Of worms and women: sarcopenia and its role in disability and mortality.
J Am Geriatr Soc. 2004 Jul;52(7):1185-90. doi: 10.1111/j.1532-5415.2004.52320.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验