Wang J, Lei B, Popp S, Meng F, Cottrell J E, Kass I S
Department of Anesthesiology, Box 6, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
Neuroscience. 2007 Mar 30;145(3):1097-107. doi: 10.1016/j.neuroscience.2006.12.047. Epub 2007 Feb 8.
Pretreatment with anesthetics before but not during hypoxia or ischemia can improve neuronal recovery after the insult. Sevoflurane, a volatile anesthetic agent, improved neuronal recovery subsequent to 10 min of global cerebral ischemia when it was present for 1 h before the ischemia. The mean number of intact hippocampal cornus ammonis 1 (CA1) pyramidal neurons in rats subjected to cerebral ischemia without any pretreatment was 17+/-5 (neurons/mm+/-S.D.) 6 weeks after the ischemia; naïve, non-ischemic rats had 177+/-5 neurons/mm. Rats pretreated with either 2% or 4% sevoflurane had 112+/-57 or 150+/-15 CA1 pyramidal neurons/mm respectively (P<0.01) 6 weeks after global cerebral ischemia. In order to examine the mechanisms of protection we used hypoxia to generate energy deprivation. Intracellular recordings were made from CA1 pyramidal neurons in rat hippocampal slices; the recovery of resting and action potentials after hypoxia was used as an indicator of neuronal survival. Pretreatment with 4% sevoflurane for 15 min improved neuronal recovery 1 h after the hypoxia; 90% of the sevoflurane-pretreated neurons recovered while none (0%) of the untreated neurons recovered. Pretreatment with sevoflurane enhanced the hypoxic hyperpolarization(-6.4+/-0.6 vs. -3.3+/-0.3 mV) and reduced the final level of the hypoxic depolarization (-39+/-6 vs. -0.3+/-2 mV) during hypoxia. Chelerythrine (5 muM), a protein kinase C/protein kinase M inhibitor, blocked both the improved recovery (10%) and the electrophysiological changes with 4% sevoflurane preconditioning. Two percent sevoflurane for 15 min before hypoxia did not improve recovery (0% recovery both groups) and did not enhance the hypoxic hyperpolarization or reduce the final depolarization during hypoxia. However if 2% sevoflurane was present for 1 h before the hypoxia then there was significantly improved recovery, enhanced hypoxic hyperpolarization, and reduced final depolarization. Thus we conclude that sevoflurane preconditioning improves recovery in both in vivo and in vitro models of energy deprivation and that preconditioning enhances the hypoxic hyperpolarization and reduces the hypoxic depolarization. Anesthetic preconditioning may protect neurons from ischemia by altering the electrophysiological changes a neuron undergoes during energy deprivation.
在缺氧或缺血之前而非期间使用麻醉剂进行预处理,可改善损伤后神经元的恢复。七氟醚是一种挥发性麻醉剂,在全脑缺血10分钟前给予1小时,可改善缺血后的神经元恢复。在没有任何预处理的情况下经历脑缺血的大鼠,缺血6周后海马齿状回1(CA1)锥体神经元完整的平均数量为17±5(神经元/mm±标准差);未经历缺血的正常大鼠有177±5个神经元/mm。分别用2%或4%七氟醚预处理的大鼠,在全脑缺血6周后,CA1锥体神经元分别为112±57或150±15个/mm(P<0.01)。为了研究保护机制,我们利用缺氧来产生能量剥夺。从大鼠海马切片的CA1锥体神经元进行细胞内记录;缺氧后静息电位和动作电位的恢复用作神经元存活的指标。用4%七氟醚预处理15分钟可改善缺氧1小时后的神经元恢复;90%经七氟醚预处理的神经元恢复,而未处理的神经元无一恢复(0%)。七氟醚预处理增强了缺氧时的超极化(-6.4±0.6对-3.3±0.3 mV),并降低了缺氧去极化的最终水平(-39±6对-0.3±2 mV)。白屈菜红碱(5μM),一种蛋白激酶C/蛋白激酶M抑制剂,可阻断4%七氟醚预处理所带来的恢复改善(10%)和电生理变化。缺氧前用2%七氟醚处理15分钟不能改善恢复(两组恢复率均为0%),也不能增强缺氧时的超极化或降低缺氧时的最终去极化。然而,如果在缺氧前1小时给予2%七氟醚,则恢复显著改善,缺氧超极化增强,最终去极化降低。因此,我们得出结论,七氟醚预处理可改善体内和体外能量剥夺模型中的恢复情况,且预处理可增强缺氧超极化并降低缺氧去极化。麻醉预处理可能通过改变神经元在能量剥夺期间所经历的电生理变化来保护神经元免受缺血损伤。