Suppr超能文献

基于基团键贡献法结合反向传播神经网络预测烷烃闪点的定量结构-性质关系研究

Quantitative structure-property relationship studies for predicting flash points of alkanes using group bond contribution method with back-propagation neural network.

作者信息

Pan Yong, Jiang Juncheng, Wang Zhirong

机构信息

Institute of Safety Engineering, Nanjing University of Technology, Nanjing 210009, China.

出版信息

J Hazard Mater. 2007 Aug 17;147(1-2):424-30. doi: 10.1016/j.jhazmat.2007.01.025. Epub 2007 Jan 12.

Abstract

Models of relationships between structure and flash point of 92 alkanes were constructed by means of artificial neural network (ANN) using group bond contribution method. Group bonds were used as molecular structure descriptors which contained information of both group property and group connectivity in molecules, and the back-propagation (BP) neural network was employed for fitting the possible nonlinear relationship existed between the structure and property. The dataset of 92 alkanes was randomly divided into a training set (62), a validation set (15) and a testing set (15). The optimal condition of the neural network was obtained by adjusting various parameters by trial-and-error. Simulated with the final optimum BP neural network [9-5-1], the results showed that the predicted flash points were in good agreement with the experimental data, with the average absolute deviation being 4.8K, and the root mean square error (RMS) being 6.86, which were shown to be more accurate than those of the multilinear regression method. The model proposed can be used not only to reveal the quantitative relation between flash points and molecular structures of alkanes, but also to predict the flash points of alkanes for chemical engineering.

摘要

采用基团键贡献法,借助人工神经网络(ANN)构建了92种烷烃结构与闪点之间的关系模型。基团键用作分子结构描述符,其包含分子中基团性质和基团连接性的信息,并采用反向传播(BP)神经网络来拟合结构与性质之间可能存在的非线性关系。将92种烷烃的数据集随机分为训练集(62个)、验证集(15个)和测试集(15个)。通过反复试验调整各种参数,获得了神经网络的最佳条件。用最终优化的BP神经网络[9-5-1]进行模拟,结果表明预测闪点与实验数据吻合良好,平均绝对偏差为4.8K,均方根误差(RMS)为6.86,结果显示比多元线性回归方法更准确。所提出的模型不仅可用于揭示烷烃闪点与分子结构之间的定量关系,还可用于预测化学工程中烷烃的闪点。

相似文献

2
Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices.
J Hazard Mater. 2008 Sep 15;157(2-3):510-7. doi: 10.1016/j.jhazmat.2008.01.016. Epub 2008 Jan 15.
3
Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices.
J Hazard Mater. 2009 Jul 15;166(1):155-86. doi: 10.1016/j.jhazmat.2008.11.005. Epub 2008 Nov 13.
5
Predicting the standard enthalpy (deltaH0f) and entropy (S0) of alkanes by artificial neural networks.
SAR QSAR Environ Res. 2000;11(3-4):235-44. doi: 10.1080/10629360008033233.
6
Inductive modeling of physico-chemical properties: flash point of alkanes.
J Hazard Mater. 2010 Jul 15;179(1-3):1161-4. doi: 10.1016/j.jhazmat.2010.03.081. Epub 2010 Mar 24.
8
Predicting the auto-ignition temperatures of organic compounds from molecular structure using support vector machine.
J Hazard Mater. 2009 May 30;164(2-3):1242-9. doi: 10.1016/j.jhazmat.2008.09.031. Epub 2008 Sep 17.
9
Prediction of HPLC retention index using artificial neural networks and IGroup E-state indices.
J Chem Inf Model. 2009 Apr;49(4):788-99. doi: 10.1021/ci9000162.
10
Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
Chem Biol Drug Des. 2007 Nov;70(5):424-36. doi: 10.1111/j.1747-0285.2007.00575.x.

引用本文的文献

1
Development of QSRR model for hydroxamic acids using PCA-GA-BP algorithm incorporated with molecular interaction-based features.
Front Chem. 2022 Nov 22;10:1056701. doi: 10.3389/fchem.2022.1056701. eCollection 2022.
2
BP-ANN for fitting the temperature-germination model and its application in predicting sowing time and region for Bermudagrass.
PLoS One. 2013 Dec 13;8(12):e82413. doi: 10.1371/journal.pone.0082413. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验