Suppr超能文献

酿酒酵母益生菌菌株布拉氏酵母菌的基因型和生理学特性

Genotypic and physiological characterization of Saccharomyces boulardii, the probiotic strain of Saccharomyces cerevisiae.

作者信息

Edwards-Ingram Laura, Gitsham Paul, Burton Nicola, Warhurst Geoff, Clarke Ian, Hoyle David, Oliver Stephen G, Stateva Lubomira

机构信息

Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, UK.

出版信息

Appl Environ Microbiol. 2007 Apr;73(8):2458-67. doi: 10.1128/AEM.02201-06. Epub 2007 Feb 9.

Abstract

Saccharomyces boulardii, a yeast that was isolated from fruit in Indochina, has been used as a remedy for diarrhea since 1950 and is now a commercially available treatment throughout Europe, Africa, and South America. Though initially classified as a separate species of Saccharomyces, recent publications have shown that the genome of S. boulardii is so similar to Saccharomyces cerevisiae that the two should be classified as conspecific. This raises the question of the distinguishing molecular and phenotypic characteristics present in S. boulardii that make it perform more effectively as a probiotic organism compared to other strains of S. cerevisiae. This investigation reports some of these distinguishing characteristics including enhanced ability for pseudohyphal switching upon nitrogen limitation and increased resistance to acidic pH. However, these differences did not correlate with increased adherence to epithelial cells or transit through mouse gut. Pertinent characteristics of the S. boulardii genome such as trisomy of chromosome IX, altered copy number of a number of individual genes, and sporulation deficiency have been revealed by comparative genome hybridization using oligonucleotide-based microarrays coupled with a rigorous statistical analysis. The contributions of the different genomic and phenotypic features of S. boulardii to its probiotic nature are discussed.

摘要

布拉酵母菌是一种从印度支那水果中分离出来的酵母,自1950年以来一直被用作治疗腹泻的药物,目前在欧洲、非洲和南美洲都是一种可商业化获得的治疗方法。尽管最初被归类为酿酒酵母的一个独立物种,但最近的出版物表明,布拉酵母菌的基因组与酿酒酵母非常相似,以至于这两者应被归类为同种。这就引出了一个问题,即布拉酵母菌中存在哪些独特的分子和表型特征,使其作为益生菌比其他酿酒酵母菌株更有效地发挥作用。本研究报告了其中一些独特特征,包括在氮限制条件下假菌丝转换能力增强以及对酸性pH的耐受性增加。然而,这些差异与对上皮细胞的粘附增加或在小鼠肠道中的转运无关。通过使用基于寡核苷酸的微阵列结合严格的统计分析进行比较基因组杂交,揭示了布拉酵母菌基因组的相关特征,如九号染色体三体、多个单个基因的拷贝数改变和孢子形成缺陷。讨论了布拉酵母菌不同的基因组和表型特征对其益生菌性质的贡献。

相似文献

1
Genotypic and physiological characterization of Saccharomyces boulardii, the probiotic strain of Saccharomyces cerevisiae.
Appl Environ Microbiol. 2007 Apr;73(8):2458-67. doi: 10.1128/AEM.02201-06. Epub 2007 Feb 9.
2
A Mutation in Causing Inefficient Galactose Metabolism in the Probiotic Yeast Saccharomyces boulardii.
Appl Environ Microbiol. 2018 May 1;84(10). doi: 10.1128/AEM.02858-17. Print 2018 May 15.
3
Molecular tools for differentiating probiotic and clinical strains of Saccharomyces cerevisiae.
Int J Food Microbiol. 2005 Sep 15;103(3):295-304. doi: 10.1016/j.ijfoodmicro.2004.12.031.
7
Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii.
Bioengineered. 2014 Jan-Feb;5(1):21-9. doi: 10.4161/bioe.26271. Epub 2013 Sep 5.
8
In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains.
Int J Food Microbiol. 2005 May 1;101(1):29-39. doi: 10.1016/j.ijfoodmicro.2004.10.039. Epub 2004 Dec 25.
9
Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii.
J Sci Food Agric. 2017 Jul;97(9):3039-3049. doi: 10.1002/jsfa.8147. Epub 2017 Jan 19.
10

引用本文的文献

1
Molecular Genetics and Probiotic Mechanisms of Saccharomyces cerevisiae var. boulardii.
Probiotics Antimicrob Proteins. 2025 Jul 24. doi: 10.1007/s12602-025-10634-y.
2
Brewing a Cure: Engineering Yeast to Reduce Inflammation-Driven Tumors.
Dig Dis Sci. 2025 Jun 26. doi: 10.1007/s10620-025-09194-6.
3
Systematic Engineering for Efficient Uric Acid-Degrading Activity in Probiotic Yeast .
ACS Synth Biol. 2025 Jun 20;14(6):2030-2043. doi: 10.1021/acssynbio.4c00831. Epub 2025 May 8.
4
Metabolic Influence of and in Cross-Kingdom Models of and .
J Fungi (Basel). 2025 Apr 19;11(4):325. doi: 10.3390/jof11040325.
5
Does tablet shape and height influence survival of fluidized bed-granulated living microorganisms during compaction?
Int J Pharm X. 2025 Apr 5;9:100332. doi: 10.1016/j.ijpx.2025.100332. eCollection 2025 Jun.
6
A yeast-based oral therapeutic delivers immune checkpoint inhibitors to reduce intestinal tumor burden.
Cell Chem Biol. 2025 Jan 16;32(1):98-110.e7. doi: 10.1016/j.chembiol.2024.10.013. Epub 2024 Nov 20.
9
Enhancing probiotic impact: engineering for optimal acetic acid production and gastric passage tolerance.
Appl Environ Microbiol. 2024 Jun 18;90(6):e0032524. doi: 10.1128/aem.00325-24. Epub 2024 May 16.
10
The preventive effects of against oxidative stress induced by lipopolysaccharide in rat brain.
Heliyon. 2024 Apr 26;10(9):e30426. doi: 10.1016/j.heliyon.2024.e30426. eCollection 2024 May 15.

本文引用的文献

1
Quantitative trait loci mapped to single-nucleotide resolution in yeast.
Nat Genet. 2005 Dec;37(12):1333-40. doi: 10.1038/ng1674. Epub 2005 Nov 6.
4
Detection of large-scale variation in the human genome.
Nat Genet. 2004 Sep;36(9):949-51. doi: 10.1038/ng1416. Epub 2004 Aug 1.
5
Large-scale copy number polymorphism in the human genome.
Science. 2004 Jul 23;305(5683):525-8. doi: 10.1126/science.1098918.
7
[Up-to-date clinical and experimental basis for the use of probiotics].
J Pediatr (Rio J). 2000 Jul;76 Suppl 1:S209-17. doi: 10.2223/jped.155.
9
Suppression of coatomer mutants by a new protein family with COPI and COPII binding motifs in Saccharomyces cerevisiae.
Mol Biol Cell. 2003 Aug;14(8):3097-113. doi: 10.1091/mbc.e02-11-0736. Epub 2003 May 3.
10
Reflections on the classification of yeasts for different end-users in biotechnology, ecology, and medicine.
Int Microbiol. 2003 Sep;6(3):175-82. doi: 10.1007/s10123-003-0131-2. Epub 2003 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验