Suppr超能文献

尽量减少识别生物体 Lévy 飞行行为时的误差。

Minimizing errors in identifying Lévy flight behaviour of organisms.

作者信息

Sims David W, Righton David, Pitchford Jonathan W

机构信息

Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, UK.

出版信息

J Anim Ecol. 2007 Mar;76(2):222-9. doi: 10.1111/j.1365-2656.2006.01208.x.

Abstract
  1. Lévy flights are specialized random walks with fundamental properties such as superdiffusivity and scale invariance that have recently been applied in optimal foraging theory. Lévy flights have movement lengths chosen from a probability distribution with a power-law tail, which theoretically increases the chances of a forager encountering new prey patches and may represent an optimal solution for foraging across complex, natural habitats. 2. An increasing number of studies are detecting Lévy behaviour in diverse organisms such as microbes, insects, birds, and mammals including humans. A principal method for detecting Lévy flight is whether the exponent (micro) of the power-law distribution of movement lengths falls within the range 1 < micro < or = 3. The exponent can be determined from the histogram of frequency vs. movement (step) lengths, but different plotting methods have been used to derive the Lévy exponent across different studies. 3. Here we investigate using simulations how different plotting methods influence the micro-value and show that the power-law plotting method based on 2(k) (logarithmic) binning with normalization prior to log transformation of both axes yields low error (1.4%) in identifying Lévy flights. Furthermore, increasing sample size reduced variation about the recovered values of micro, for example by 83% as sample number increased from n = 50 up to 5000. 4. Simple log transformation of the axes of the histogram of frequency vs. step length underestimated micro by c.40%, whereas two other methods, 2(k) (logarithmic) binning without normalization and calculation of a cumulative distribution function for the data, both estimate the regression slope as 1-micro. Correction of the slope therefore yields an accurate Lévy exponent with estimation errors of 1.4 and 4.5%, respectively. 5. Empirical reanalysis of data in published studies indicates that simple log transformation results in significant errors in estimating micro, which in turn affects reliability of the biological interpretation. The potential for detecting Lévy flight motion when it is not present is minimized by the approach described. We also show that using a large number of steps in movement analysis such as this will also increase the accuracy with which optimal Lévy flight behaviour can be detected.
摘要
  1. 莱维飞行是一种特殊的随机游走,具有超扩散性和尺度不变性等基本特性,最近已应用于最优觅食理论。莱维飞行的移动长度是从具有幂律尾部的概率分布中选取的,从理论上讲,这增加了觅食者遇到新猎物斑块的机会,并且可能代表了在复杂自然栖息地中觅食的最优解决方案。2. 越来越多的研究在各种生物体中检测到莱维行为,如微生物、昆虫、鸟类以及包括人类在内的哺乳动物。检测莱维飞行的主要方法是移动长度的幂律分布的指数(μ)是否落在1 < μ ≤ 3的范围内。该指数可以从频率与移动(步长)长度的直方图中确定,但在不同的研究中使用了不同的绘图方法来推导莱维指数。3. 在此,我们通过模拟研究不同的绘图方法如何影响μ值,并表明基于双对数(对数)分箱且在双轴对数变换之前进行归一化的幂律绘图方法在识别莱维飞行时产生的误差较低(1.4%)。此外,增加样本量会减少μ恢复值的变化,例如当样本数量从n = 50增加到5000时,变化减少了83%。4. 频率与步长直方图坐标轴的简单对数变换会使μ低估约40%,而另外两种方法,即未归一化的双对数(对数)分箱以及计算数据的累积分布函数,都将回归斜率估计为1 - μ。因此,对斜率进行校正可得到准确的莱维指数,估计误差分别为1.4%和4.5%。5. 对已发表研究中的数据进行实证重新分析表明,简单对数变换在估计μ时会导致显著误差,这反过来又会影响生物学解释的可靠性。所描述的方法将在不存在莱维飞行运动时检测到它的可能性降至最低。我们还表明,在这样的运动分析中使用大量步长也会提高检测最优莱维飞行行为的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验