接受联合抗逆转录病毒治疗的泰国患者免疫和病毒学终点的预测因素。
Predictive factors for immunological and virological endpoints in Thai patients receiving combination antiretroviral treatment.
作者信息
Srasuebkul P, Ungsedhapand C, Ruxrungtham K, Boyd M A, Phanuphak P, Cooper D A, Law M G
机构信息
National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, 376 Victoria Street, Sydney, NSW 2010, Australia.
出版信息
HIV Med. 2007 Jan;8(1):46-54. doi: 10.1111/j.1468-1293.2007.00427.x.
BACKGROUND
Routine CD4 count and HIV viral load monitoring is a financial barrier in developing countries.
METHODS
We assessed factors associated with CD4 counts < or =200 cells/microL and detectable viral load in Thai HIV-infected patients receiving antiretroviral therapy (ART) at the HIV Netherlands Australia Thailand Research Collaboration and the Thai Red Cross AIDS Research Centre (HIV-NAT). Univariate and multivariate Cox proportional hazards models for multiple treatment failures were used to determine factors related to CD4 counts < or =200 cells/microL and detectable viral load. Multivariate Cox proportional hazards models for CD4 counts < or =200 cells/microL were developed with and without viral load in order to build models applicable to contexts in which viral load is not available.
RESULTS
Four hundred and seventeen patients were included in the study. Fifty-four per cent were male, and the median CD4 count and log(10) viral load at baseline were 283 cells/microL and 4.3 log(10) HIV-1 RNA copies/mL, respectively. Independent factors related to CD4 count < or =200 cells/microL were CD4 count at baseline [hazards ratio (HR) 0.20/100 cells/microL; 95% confidence interval (CI) 0.17-0.23] and changes in CD4 count (HR 0.22/100 cells/microL; 95% CI 0.17-0.28). Factors in multivariate models (in which viral load was considered for inclusion) were CD4 count at baseline (HR 0.21/100 cells/microL; 95% CI 0.18-0.24), changes in CD4 count (HR 0.25/100 cells/microL; 95% CI 0.19-0.32) and detectable viral load (HR 1.94; 95% CI 1.20-3.13). Predictive factors (independent of viral load) were triple ART or highly active antiretroviral therapy (HAART) (HR 0.28; 95% CI 0.22-0.36) and detectable viral load at baseline (HR 2.96; 95% CI 2.24-3.91). Conclusions CD4 count at baseline and changes in CD4 count were important in predicting CD4 counts < or =200 cells/microL. Triple ART and detectable viral load at baseline were important in predicting detectable viral load.
背景
在发展中国家,常规的CD4细胞计数和HIV病毒载量监测存在经济障碍。
方法
我们在荷兰-澳大利亚-泰国HIV研究合作项目及泰国红十字会艾滋病研究中心(HIV-NAT),对接受抗逆转录病毒治疗(ART)的泰国HIV感染患者中,与CD4细胞计数≤200个/微升及可检测到病毒载量相关的因素进行了评估。使用多因素Cox比例风险模型分析多次治疗失败的情况,以确定与CD4细胞计数≤200个/微升及可检测到病毒载量相关的因素。针对CD4细胞计数≤200个/微升,分别构建了包含和不包含病毒载量的多因素Cox比例风险模型,以便建立适用于无法检测病毒载量情况的模型。
结果
417名患者纳入本研究。其中54%为男性,基线时CD4细胞计数中位数为283个/微升,log(10)病毒载量中位数为4.3 log(10) HIV-1 RNA拷贝/毫升。与CD4细胞计数≤200个/微升相关的独立因素为基线CD4细胞计数[风险比(HR)0.20/100个/微升;95%置信区间(CI)0.17 - 0.23]及CD4细胞计数变化(HR 0.22/100个/微升;95% CI 0.17 - 0.28)。多因素模型(考虑纳入病毒载量)中的因素为基线CD4细胞计数(HR 0.21/100个/微升;95% CI 0.18 - 0.24)、CD4细胞计数变化(HR 0.25/100个/微升;95% CI 0.19 - 0.32)及可检测到的病毒载量(HR 1.94;95% CI 1.20 - 3.13)。预测因素(与病毒载量无关)为三联ART或高效抗逆转录病毒疗法(HAART)(HR 0.28;95% CI 0.22 - 0.36)及基线时可检测到的病毒载量(HR 2.96;95% CI 2.24 - 3.91)。结论:基线CD4细胞计数及CD4细胞计数变化对预测CD4细胞计数≤200个/微升很重要。三联ART及基线时可检测到的病毒载量对预测可检测到的病毒载量很重要。