Takahashi Yu, Yasuhiko Yukuto, Kitajima Satoshi, Kanno Jun, Saga Yumiko
Cellular and Molecular Toxicology Division, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagayaku, Tokyo 158-8501, Japan.
Dev Biol. 2007 Apr 15;304(2):593-603. doi: 10.1016/j.ydbio.2007.01.007. Epub 2007 Jan 9.
Mesp1 and Mesp2 are homologous transcription factors that are co-expressed in the anterior presomitic mesoderm (PSM) during mouse somitogenesis. The loss of Mesp2 alone in our conventional Mesp2-null mice results in the complete disruption of somitogenesis, including segment border formation, rostro-caudal patterning and epithelialization of somitic mesoderm. This has led us to interpret that Mesp2 is solely responsible for somitogenesis. Our novel Mesp2 knock-in alleles, however, exhibit a remarkable upregulation of Mesp1. Removal of the pgk-neo cassette from the new allele leads to localization of Mesp1 and several gene expression, and somite formation in the tail region. Moreover, a reduction in the gene dosage of Mesp1 by one copy disrupts somite formation, confirming the involvement of Mesp1 in the rescue events. Furthermore, we find that activated Notch1 knock-in significantly upregulates Mesp1 expression, even in the absence of a Notch signal mediator, Psen1. This indicates that the Psen1-independent effects of activated Notch1 are mostly attributable to the induction of Mesp1. However, we have also confirmed that Mesp2 enhances the expression of the Notch1 receptor in the anterior PSM. The activation and subsequent suppression of Notch signaling might thus be a crucial event for both stripe pattern formation and boundary formation.
Mesp1和Mesp2是同源转录因子,在小鼠体节发生过程中在前体节中胚层(PSM)共同表达。在我们传统的Mesp2基因敲除小鼠中,单独缺失Mesp2会导致体节发生完全紊乱,包括节段边界形成、头尾模式形成以及体节中胚层的上皮化。这使我们认为Mesp2是体节发生的唯一负责因子。然而,我们新的Mesp2基因敲入等位基因显示出Mesp1的显著上调。从新等位基因中去除pgk-neo盒会导致Mesp1的定位以及几个基因的表达,并在尾部区域形成体节。此外,将Mesp1的基因剂量减少一个拷贝会破坏体节形成,证实Mesp1参与了拯救事件。此外,我们发现激活的Notch1基因敲入即使在没有Notch信号介导因子Psen1的情况下也能显著上调Mesp1的表达。这表明激活的Notch1的Psen1非依赖性作用主要归因于Mesp1的诱导。然而,我们也证实Mesp2会增强前体节中胚层中Notch1受体的表达。因此,Notch信号的激活和随后的抑制可能是条纹模式形成和边界形成的关键事件。