Sillen Alain, Barbier Pascale, Landrieu Isabelle, Lefebvre Sylvie, Wieruszeski Jean-Michel, Leroy Arnaud, Peyrot Vincent, Lippens Guy
CNRS UMR 8576 Unité de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille 1, 59655, Villeneuve d'Ascq Cedex, France.
Biochemistry. 2007 Mar 20;46(11):3055-64. doi: 10.1021/bi061920i. Epub 2007 Feb 21.
Whereas the interaction between Tau and the microtubules has been studied in great detail both by macroscopic techniques (cosedimentation, cryo-electron microscopy, and fluorescence spectroscopy) using the full-length protein or by peptide mapping assays, no detailed view at the level of individual amino acids has been presented when using the full-length protein. Here, we present a nuclear magnetic resonance (NMR) study of the interaction between the full-length neuronal protein Tau and paclitaxel-stabilized microtubules (MTs). As signal disappearance in the heteronuclear 1H-15N correlation spectra of isotope-labeled Tau in complex with MTs is due to direct association of the corresponding residue with the solid-like MT wall, we can map directly the fragment in interaction with the MT surface, and obtain a molecular picture of the precise interaction zones. The N-terminal region projects from the microtubule surface, and the lack of chemical shift variations when compared with free Tau proves that this region can regulate microtubular separation without adopting a stable conformation. Amino acids in the four microtubule binding repeats (MTBRs) lose all of their intensity, underscoring their immobilization upon binding to the MTs. The same loss of NMR intensity was observed for the proline-rich region starting at Ser214, underscoring its importance in the Tau:MT interaction. Fluorescence resonance energy transfer (FRET) experiments were used to obtain thermodynamic binding parameters, and led to the conclusion that the NMR defined fragment indeed is the major player in the interaction. When the same Ser214 is phosphorylated by the PKA kinase, the Tau:MT interaction strength decreases by 2 orders of magnitude, but the proline-rich region including the phospho-Ser214 does not gain sufficient mobility in the complex to make it observable by NMR spectroscopy. The presence of an intramolecular disulfide bridge, on the contrary, does lead to a partial detachment of the C-terminus of Tau, and decreases significantly the overloading of Tau on the MT surface.
虽然已经通过使用全长蛋白的宏观技术(共沉降、冷冻电子显微镜和荧光光谱)或肽图谱分析对Tau与微管之间的相互作用进行了详细研究,但在使用全长蛋白时,尚未呈现单个氨基酸水平的详细视图。在此,我们展示了一项关于全长神经元蛋白Tau与紫杉醇稳定的微管(MTs)之间相互作用的核磁共振(NMR)研究。由于与MTs复合的同位素标记Tau的异核1H-15N相关光谱中的信号消失是由于相应残基与类固体MT壁的直接结合,我们可以直接绘制与MT表面相互作用的片段,并获得精确相互作用区域的分子图像。N端区域从微管表面突出,与游离Tau相比缺乏化学位移变化,证明该区域可以在不采用稳定构象的情况下调节微管间距。四个微管结合重复序列(MTBRs)中的氨基酸失去了所有强度,突出了它们在与MTs结合时的固定化。从Ser214开始的富含脯氨酸区域也观察到相同的NMR强度损失,突出了其在Tau:MT相互作用中的重要性。荧光共振能量转移(FRET)实验用于获得热力学结合参数,并得出结论,NMR定义的片段确实是相互作用中的主要参与者。当相同的Ser214被PKA激酶磷酸化时,Tau:MT相互作用强度降低2个数量级,但包括磷酸化Ser214的富含脯氨酸区域在复合物中没有获得足够的流动性,以至于无法通过NMR光谱观察到。相反,分子内二硫键的存在确实导致Tau的C端部分脱离,并显著降低了Tau在MT表面的过载。