Suppr超能文献

视网膜神经节细胞轴突的视网膜内投射作为研究轴突导航的模型系统。

Intraretinal projection of retinal ganglion cell axons as a model system for studying axon navigation.

作者信息

Bao Zheng-Zheng

机构信息

Department of Medicine and Cell Biology, Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605, USA.

出版信息

Brain Res. 2008 Feb 4;1192:165-77. doi: 10.1016/j.brainres.2007.01.116. Epub 2007 Feb 2.

Abstract

The initial step of retinal ganglion cell (RGC) axon pathfinding involves directed growth of RGC axons toward the center of the retina, the optic disc, a process termed "intraretinal guidance". Due to the accessibility of the system, and with various embryological, molecular and genetic approaches, significant progress has been made in recent years toward understanding the mechanisms involved in the precise guidance of the RGC axons. As axons are extending from RGCs located throughout the retina, a multitude of factors expressed along with the differentiation wave are important for the guidance of the RGC axons. To ensure that the RGC axons are oriented correctly, restricted to the optic fiber layer (OFL) of the retina, and exit the eye properly, different sets of positive and negative factors cooperate in the process. Fasciculation mediated by a number of cell adhesion molecules (CAMs) and modulation of axonal response to guidance factors provide additional mechanisms to ensure proper guidance of the RGC axons. The intraretinal axon guidance thus serves as an excellent model system for studying how different signals are regulated, modulated and integrated for guiding a large number of axons in three-dimensional space.

摘要

视网膜神经节细胞(RGC)轴突寻路的初始步骤涉及RGC轴突向视网膜中心即视盘的定向生长,这一过程被称为“视网膜内导向”。由于该系统具有易接近性,并且借助各种胚胎学、分子学和遗传学方法,近年来在理解RGC轴突精确导向所涉及的机制方面取得了重大进展。当轴突从遍布整个视网膜的RGC延伸时,随着分化波一起表达的多种因子对RGC轴突的导向很重要。为确保RGC轴突正确定向、局限于视网膜的视神经纤维层(OFL)并正确穿出眼球,不同组的正向和负向因子在这个过程中协同作用。由多种细胞黏附分子(CAM)介导的成束以及轴突对导向因子反应的调节提供了额外的机制,以确保RGC轴突的正确导向。因此,视网膜内轴突导向是研究如何调节、调制和整合不同信号以在三维空间中引导大量轴突的极佳模型系统。

相似文献

1
Intraretinal projection of retinal ganglion cell axons as a model system for studying axon navigation.
Brain Res. 2008 Feb 4;1192:165-77. doi: 10.1016/j.brainres.2007.01.116. Epub 2007 Feb 2.
2
Heparan sulfate regulates intraretinal axon pathfinding by retinal ganglion cells.
Invest Ophthalmol Vis Sci. 2011 Aug 22;52(9):6671-9. doi: 10.1167/iovs.11-7559.
3
DSCAM promotes axon fasciculation and growth in the developing optic pathway.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1702-1707. doi: 10.1073/pnas.1618606114. Epub 2017 Jan 30.
4
The cell adhesion molecule NrCAM is crucial for growth cone behaviour and pathfinding of retinal ganglion cell axons.
Development. 2005 Aug;132(16):3609-18. doi: 10.1242/dev.01934. Epub 2005 Jul 20.
6
Ganglion cell axon pathfinding in the retina and optic nerve.
Semin Cell Dev Biol. 2004 Feb;15(1):125-36. doi: 10.1016/j.semcdb.2003.09.006.
8
Robo2 is required for Slit-mediated intraretinal axon guidance.
Dev Biol. 2009 Nov 15;335(2):418-26. doi: 10.1016/j.ydbio.2009.09.034. Epub 2009 Sep 25.
9
Slit proteins regulate distinct aspects of retinal ganglion cell axon guidance within dorsal and ventral retina.
J Neurosci. 2006 Aug 2;26(31):8082-91. doi: 10.1523/JNEUROSCI.1342-06.2006.
10
NF-Protocadherin Regulates Retinal Ganglion Cell Axon Behaviour in the Developing Visual System.
PLoS One. 2015 Oct 21;10(10):e0141290. doi: 10.1371/journal.pone.0141290. eCollection 2015.

引用本文的文献

1
Signaling - transcription interactions in mouse retinal ganglion cells early axon pathfinding -a literature review.
Front Ophthalmol (Lausanne). 2023 May 17;3:1180142. doi: 10.3389/fopht.2023.1180142. eCollection 2023.
3
Intravitreal Injection of AAV for the Transduction of Mouse Retinal Ganglion Cells.
Methods Mol Biol. 2023;2708:155-174. doi: 10.1007/978-1-0716-3409-7_17.
8
Dystroglycan Maintains Inner Limiting Membrane Integrity to Coordinate Retinal Development.
J Neurosci. 2017 Aug 30;37(35):8559-8574. doi: 10.1523/JNEUROSCI.0946-17.2017. Epub 2017 Jul 31.
9
Six3 regulates optic nerve development via multiple mechanisms.
Sci Rep. 2016 Jan 29;6:20267. doi: 10.1038/srep20267.

本文引用的文献

1
Polarization and orientation of retinal ganglion cells in vivo.
Neural Dev. 2006 Oct 13;1:2. doi: 10.1186/1749-8104-1-2.
2
Orchestrating ontogenesis: variations on a theme by sonic hedgehog.
Nat Rev Genet. 2006 Nov;7(11):841-50. doi: 10.1038/nrg1969.
3
Slit proteins regulate distinct aspects of retinal ganglion cell axon guidance within dorsal and ventral retina.
J Neurosci. 2006 Aug 2;26(31):8082-91. doi: 10.1523/JNEUROSCI.1342-06.2006.
4
Proper patterning of the optic fissure requires the sequential activity of BMP7 and SHH.
Development. 2006 Aug;133(16):3179-90. doi: 10.1242/dev.02493. Epub 2006 Jul 19.
5
Sema3D and Sema7A have distinct expression patterns in chick embryonic development.
Dev Dyn. 2006 Aug;235(8):2282-9. doi: 10.1002/dvdy.20882.
7
Neural map specification by gradients.
Curr Opin Neurobiol. 2006 Feb;16(1):59-66. doi: 10.1016/j.conb.2006.01.010. Epub 2006 Jan 18.
10
Retinotectal mapping: new insights from molecular genetics.
Annu Rev Cell Dev Biol. 2005;21:551-80. doi: 10.1146/annurev.cellbio.20.022403.093702.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验