Suppr超能文献

香港南部海水水质的化学计量学数据分析及来源识别

Chemometrics data analysis of marine water quality and source identification in Southern Hong Kong.

作者信息

Zhou Feng, Guo Huaicheng, Liu Yong, Jiang Yumei

机构信息

College of Environmental Sciences, Peking University, Beijing 100871, PR China.

出版信息

Mar Pollut Bull. 2007 Jun;54(6):745-56. doi: 10.1016/j.marpolbul.2007.01.006. Epub 2007 Feb 23.

Abstract

Various chemometric methods were used to analyze data sets of marine water quality for 19 parameters measured at 16 different sites of southern Hong Kong from 2000 to 2004 (18,240 observations), to determine temporal and spatial variations in marine water quality and identify pollution sources. Hierarchical cluster analysis (CA) grouped the 12 months into three periods (January-April, May-August and September-December) and the 16 sampling sites into two groups (A and B) based on similarities in marine water-quality characteristics. Discriminant analysis (DA) was important in data reduction because it used only eight parameters (TEMP, TURB, Si, NO(3)(-)-N, NH(4)(+)-N, NO(2)(-)-N, DO, and Chl-a) to correctly assign about 86% of the cases, and five parameters (SD, NH(4)(+)-N, TP, NO(2)(-)-N, and BOD(5)) to correctly assign >81.15% of the cases. In addition, principal component analysis (PCA) identified four latent pollution sources for groups A and B: organic/eutrophication pollution, natural pollution, mineral pollution, and nutrient/fecal pollution. Furthermore, during the second and third periods, all sites received more organic/eutrophication pollution and natural pollution than in the first period. SM5, SM6, SM17, SM10, SM11, SM12, and SM13 (second period) were affected by organic and eutrophication pollution, whereas SM3 (third period) and SM9 (second period) were influenced by natural pollution. However, differences between mineral pollution and nutrient/fecal pollution were not significant among the three periods. SM17 and SM10 were affected by mineral pollution, whereas SM4 and SM9 were highly polluted by nitrogenous nutrient/fecal pollution.

摘要

采用多种化学计量学方法分析了2000年至2004年在香港南部16个不同地点测量的19项参数的海水水质数据集(18240次观测),以确定海水水质的时空变化并识别污染源。层次聚类分析(CA)根据海水水质特征的相似性将12个月分为三个时期(1月至4月、5月至8月和9月至12月),并将16个采样点分为两组(A组和B组)。判别分析(DA)在数据简化方面很重要,因为它仅使用八个参数(温度、浊度、硅、硝酸根氮、铵根氮、亚硝酸根氮、溶解氧和叶绿素a)就能正确分类约86%的样本,使用五个参数(盐度、铵根氮、总磷、亚硝酸根氮和生化需氧量)就能正确分类超过81.15%的样本。此外,主成分分析(PCA)确定了A组和B组的四个潜在污染源:有机/富营养化污染、自然污染、矿物污染和营养物/粪便污染。此外,在第二和第三时期,所有地点受到的有机/富营养化污染和自然污染都比第一时期更多。SM5、SM6、SM17、SM10、SM11、SM12和SM13(第二时期)受到有机和富营养化污染的影响,而SM3(第三时期)和SM9(第二时期)受到自然污染的影响。然而,三个时期的矿物污染和营养物/粪便污染之间的差异不显著。SM17和SM10受到矿物污染的影响,而SM4和SM9受到含氮营养物/粪便污染的高度污染。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验