Navratilova Edita, Waite Sue, Stropova Dagmar, Eaton Miriam C, Alves Isabel D, Hruby Victor J, Roeske William R, Yamamura Henry I, Varga Eva V
Department of Medical Pharmacology, The University of Arizona, Tucson, AZ 85724, USA.
Mol Pharmacol. 2007 May;71(5):1416-26. doi: 10.1124/mol.106.030023. Epub 2007 Feb 22.
Agonist-mediated desensitization of the opioid receptors is thought to function as a protective mechanism against sustained opioid signaling and therefore may prevent the development of opioid tolerance. However, the exact molecular mechanism of opioid receptor desensitization remains unresolved because of difficulties in measuring and interpreting receptor desensitization. In the present study, we investigated deltorphin II-mediated rapid desensitization of the human delta opioid receptors (hDOR) by measuring guanosine 5'-O-(3-[(35)S]thio)-triphosphate binding and inhibition of cAMP accumulation. We developed a mathematical analysis based on the operational model of agonist action (Black et al., 1985) to calculate the proportion of desensitized receptors. This approach permits a correct analysis of the complex process of functional desensitization by taking into account receptor-effector coupling and the time dependence of agonist pretreatment. Finally, we compared hDOR desensitization with receptor phosphorylation at Ser363, the translocation of beta-arrestin2, and hDOR internalization. We found that in Chinese hamster ovary cells expressing the hDOR, deltorphin II treatment leads to phosphorylation of Ser363, translocation of beta-arrestin2 to the plasma membrane, receptor internalization, and uncoupling from G proteins. It is noteworthy that mutation of the primary phosphorylation site Ser363 to alanine had virtually no effect on agonist-induced beta-arrestin2 translocation and receptor internalization yet significantly attenuated receptor desensitization. These results strongly indicate that phosphorylation of Ser363 is the primary mechanism of hDOR desensitization.
阿片受体的激动剂介导脱敏被认为是一种针对持续阿片信号的保护机制,因此可能预防阿片耐受性的发展。然而,由于测量和解释受体脱敏存在困难,阿片受体脱敏的确切分子机制仍未解决。在本研究中,我们通过测量鸟苷5'-O-(3-[(35)S]硫代)-三磷酸结合以及抑制环磷酸腺苷(cAMP)积累,研究了强啡肽II介导的人δ阿片受体(hDOR)快速脱敏。我们基于激动剂作用的操作模型(Black等人,1985年)开发了一种数学分析方法,以计算脱敏受体的比例。这种方法通过考虑受体-效应器偶联以及激动剂预处理的时间依赖性,允许对功能脱敏的复杂过程进行正确分析。最后,我们将hDOR脱敏与Ser363处的受体磷酸化、β-抑制蛋白2的转位以及hDOR内化进行了比较。我们发现,在表达hDOR的中国仓鼠卵巢细胞中,强啡肽II处理导致Ser363磷酸化、β-抑制蛋白2转位至质膜、受体内化以及与G蛋白解偶联。值得注意的是,主要磷酸化位点Ser363突变为丙氨酸对激动剂诱导的β-抑制蛋白2转位和受体内化几乎没有影响,但显著减弱了受体脱敏。这些结果强烈表明,Ser363磷酸化是hDOR脱敏的主要机制。