Suppr超能文献

[兴安落叶松地理分布对未来气候变化的响应:一项模拟研究]

[Responses of Larix gmelinii geographical distribution to future climate change: a simulation study].

作者信息

Li Feng, Zhou Guangsheng, Cao Mingcang

机构信息

Laboratory of Quantitative Vegetation Ecology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.

出版信息

Ying Yong Sheng Tai Xue Bao. 2006 Dec;17(12):2255-60.

Abstract

With warmth index, coldness index, humidity index, mean annual precipitation, minimum temperature in January, and maximum temperature in July as environmental variables, and by using Generalized Linear Model (GLM), Stepwise Generalized Linear Model (SGLM), Generalized Additive Model (GAM), and Classification and Regression Tree (CART), this paper simulated the geographical distribution of Larix gemelinii under the conditions of future climate change. Cohen's Kappa and the area under the Receiver Operating Characteristic curve were used to evaluate the performance of the models, and the most suitable model was selected to predict the geographical distribution. The results showed that all the test models except GLM could simulate the geographical distribution of L. gmelinii very well, and GAM performed best. Climate change would result in a reduction in the suitable area of L. gmelinii by 58.1% under SRES-A2 scenario and by 66.4% under SRES-B2 scenario in 2020. The suitable area of L. gmelinii would be further reduced by 99.7% under SRES-A2 scenario and by 97.9% under SRES-B2 scenario in 2050, and completely disappeared under both scenarios in 2100.

摘要

以温暖指数、寒冷指数、湿度指数、年平均降水量、1月最低气温和7月最高气温作为环境变量,运用广义线性模型(GLM)、逐步广义线性模型(SGLM)、广义相加模型(GAM)和分类回归树(CART),模拟了气候变化情景下兴安落叶松的地理分布。采用Cohen's Kappa系数和受试者工作特征曲线下面积评估模型性能,选取最合适的模型预测地理分布。结果表明,除GLM外,其他测试模型均能较好地模拟兴安落叶松的地理分布,其中GAM性能最佳。气候变化将导致2020年在SRES - A2情景下兴安落叶松适宜面积减少58.1%,在SRES - B2情景下减少66.4%。到2050年,在SRES - A2情景下兴安落叶松适宜面积将进一步减少99.7%,在SRES - B2情景下减少97.9%,到2100年在两种情景下适宜面积均完全消失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验