Suppr超能文献

Ionization induced relaxation in solvation structure: a comparison between Na(H2O)n and Na(NH3)n.

作者信息

Gao Bing, Liu Zhi-Feng

机构信息

Department of Chemistry, Chinese University of Hong Kong, Shatin, Hong Kong, China.

出版信息

J Chem Phys. 2007 Feb 28;126(8):084501. doi: 10.1063/1.2464109.

Abstract

The constant ionization potential for hydrated sodium clusters Na(H2O)n just beyond n=4, as observed in photoionization experiments, has long been a puzzle in violation of the well-known (n+1)(-1/3) rule that governs the gradual transition in properties from clusters to the bulk. Based on first principles calculations, a link is identified between this puzzle and an important process in solution: the reorganization of the solvation structure after the removal of a charged particle. Na(H2O)n is a prototypical system with a solvated electron coexisting with a solvated sodium ion, and the cluster structure is determined by a balance among three factors: solute-solvent (Na+-H2O), solvent-solvent (H2O-H2O), and electron-solvent (OH{e}HO) interactions. Upon the removal of an electron by photoionization, extensive structural reorganization is induced to reorient OH{e}HO features in the neutral Na(H2O)n for better Na+-H2O and H2O-H2O interactions in the cationic Na+(H2O)n. The large amount of energy released, often reaching 1 eV or more, indicates that experimentally measured ion signals actually come from autoionization via vertical excitation to high Rydberg states below the vertical ionization potential, which induces extensive structural reorganization and the loss of a few solvent molecules. It provides a coherent explanation for all the peculiar features in the ionization experiments, not only for Na(H2O)n but also for Li(H2O)n and Cs(H2O)n. In addition, the contrast between Na(H2O)n and Na(NH3)n experiments is accounted for by the much smaller relaxation energy for Na(NH3)n, for which the structures and energetics are also elucidated.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验