Lazarides Theodore, Easun Timothy L, Veyne-Marti Claire, Alsindi Wassim Z, George Michael W, Deppermann Nina, Hunter Christopher A, Adams Harry, Ward Michael D
Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom.
J Am Chem Soc. 2007 Apr 4;129(13):4014-27. doi: 10.1021/ja068436n. Epub 2007 Mar 9.
We show in this paper how the 3MLCT luminescence of [Ru(bipy)(CN)4]2-, which is known to be highly solvent-dependent, may be varied over a much wider range than can be achieved by solvent effects, by interaction of the externally directed cyanide ligands with additional metal cations both in the solid state and in solution. A series of crystallographic studies of [Ru(bipy)(CN)4]2- salts with different metal cations Mn+ (Li+, Na+, K+, mixed Li+/K+, Cs+, and Ba2+) shows how the cyanide/Mn+ interaction varies from the conventional "end-on" with the more Lewis-acidic cations (Li+, Ba2+) to the more unusual "side-on" interaction with the softer metal cations (K+, Cs+). The solid-state luminescence intensity and lifetime of these salts is highly dependent on the nature of the cation, with Cs+ affording the weakest luminescence and Ba2+ the strongest. A series of titrations of the more soluble derivative [Ru(tBu2bipy)(CN)4]2- in MeCN with a range of metal salts showed how the cyanide/Mn+ association results in a substantial blue-shift of the 1MLCT absorptions, and 3MLCT energies, intensities, and lifetimes, with the complex varying from essentially non-luminescent in the absence of metal cation to showing strong (phi = 0.07), long-lived (1.4 micros), and high-energy (583 nm) luminescence in the presence of Ba2+. This modulation of the 3MLCT energy, over a range of about 6000 cm-1 depending on the added cation, could be used to reverse the direction of photoinduced energy transfer in a dyad containing covalently linked [Ru(bipy)3]2+ and [Ru(bipy)(CN)4]2- termini. In the absence of a metal cation, the [Ru(bipy)(CN)4]2- terminus has the lower 3MLCT energy and thereby quenches the [Ru(bipy)3]2+-based luminescence; in the presence of Ba2+ ions, the 3MLCT energy of the [Ru(bipy)(CN)4]2- terminus is raised above that of the [Ru(bipy)3]2+ terminus, resulting in energy transfer to and sensitized emission from the latter.
我们在本文中展示了,已知对溶剂高度依赖的[Ru(bipy)(CN)₄]²⁻的3MLCT发光,如何通过外部定向的氰化物配体与固态和溶液中的额外金属阳离子相互作用,在比溶剂效应所能实现的范围更宽的范围内发生变化。对[Ru(bipy)(CN)₄]²⁻与不同金属阳离子Mn⁺(Li⁺、Na⁺、K⁺、Li⁺/K⁺混合、Cs⁺和Ba²⁺)形成的盐进行的一系列晶体学研究表明,氰化物/Mn⁺相互作用如何从与路易斯酸性更强的阳离子(Li⁺、Ba²⁺)的传统“端对端”相互作用,变化为与较软金属阳离子(K⁺、Cs⁺)更不寻常的“侧对侧”相互作用。这些盐的固态发光强度和寿命高度依赖于阳离子的性质,Cs⁺导致最弱的发光,而Ba²⁺导致最强的发光。用一系列金属盐对更易溶的衍生物[Ru(tBu₂bipy)(CN)₄]²⁻在乙腈中进行的一系列滴定表明,氰化物/Mn⁺缔合如何导致1MLCT吸收、3MLCT能量、强度和寿命发生大幅蓝移,配合物在没有金属阳离子时基本不发光,而在有Ba²⁺时表现出强(φ = 0.07)、长寿命(1.4微秒)和高能(583纳米)发光。根据添加的阳离子不同,3MLCT能量在约6000厘米⁻¹的范围内发生这种调制,可用于反转包含共价连接的[Ru(bipy)₃]²⁺和[Ru(bipy)(CN)₄]²⁻末端的二元体系中光致能量转移的方向。在没有金属阳离子的情况下,[Ru(bipy)(CN)₄]²⁻末端具有较低的3MLCT能量,从而淬灭基于[Ru(bipy)₃]²⁺的发光;在有Ba²⁺离子的情况下,[Ru(bipy)(CN)₄]²⁻末端的3MLCT能量升高到高于[Ru(bipy)₃]²⁺末端的能量,导致能量转移到后者并使其产生敏化发射。