Pispola Giulio, Horoshenkov Kirill V, Khan Amir
Department of Industrial Engineering, University of Perugia, via G. Duranti 67, 06125 Perugia, Italy.
J Acoust Soc Am. 2007 Feb;121(2):961-6. doi: 10.1121/1.2427114.
The purpose of this paper is to study the acoustic behavior of highly heterogeneous, low density porous structures having a complex pore size distribution using two distinct theoretical approaches. The first approach requires the direct numerical integration of the Biot viscosity correction function. The main requirement here is a knowledge of the probability density function of the pore size, which can be achieved by an optical pore-counting technique. The fact that the observed pore size distribution in these materials could be distinctively split into two parts suggested the use of the second approach based upon the double-porosity theory by Olny and Boutin [J. Acoust. Soc. Am. 114(1), 73-89 (2003)]. The latter approach assumes a low permeability contrast between the two porous scales so that the acoustic properties could be estimated using the semi-phenomenological models of Johnson and Lafarge for the viscous and thermal dynamic permeabilities. Numerical results predicted by the two models are then compared with impedance tube experimental data showing good accuracy of the selected prediction methods.
本文的目的是使用两种不同的理论方法研究具有复杂孔径分布的高度非均质、低密度多孔结构的声学行为。第一种方法需要对毕奥粘度校正函数进行直接数值积分。这里的主要要求是了解孔径的概率密度函数,这可以通过光学孔径计数技术来实现。这些材料中观察到的孔径分布可以明显地分为两部分,这一事实表明可以使用基于奥尔尼和布廷的双孔隙度理论的第二种方法[《美国声学学会杂志》114(1),73 - 89(2003)]。后一种方法假设两个多孔尺度之间的渗透率对比度较低,以便可以使用约翰逊和拉法热的粘性和热动态渗透率半现象学模型来估计声学特性。然后将这两种模型预测的数值结果与阻抗管实验数据进行比较,结果表明所选预测方法具有良好的准确性。