Suppr超能文献

组蛋白H2A的丝氨酸129对染色质结构的作用。

Contribution of the serine 129 of histone H2A to chromatin structure.

作者信息

Fink Michel, Imholz Daniela, Thoma Fritz

机构信息

Institute of Cell Biology, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland.

出版信息

Mol Cell Biol. 2007 May;27(10):3589-600. doi: 10.1128/MCB.02077-06. Epub 2007 Mar 12.

Abstract

Phosphorylation of a yeast histone H2A at C-terminal serine 129 has a central role in double-strand break repair. Mimicking H2A phosphorylation by replacement of serine 129 with glutamic acid (hta1-S129E) suggested that phosphorylation destabilizes chromatin structures and thereby facilitates the access of repair proteins. Here we have tested chromatin structures in hta1-S129 mutants and in a C-terminal tail deletion strain. We show that hta1-S129E affects neither nucleosome positioning in minichromosomes and genomic loci nor supercoiling of minichromosomes. Moreover, hta1-S129E has no effect on chromatin stability measured by conventional nuclease digestion, nor does it affect DNA accessibility and repair of UV-induced DNA lesions by nucleotide excision repair and photolyase in vivo. Similarly, deletion of the C-terminal tail has no effect on nucleosome positioning and stability. These data argue against a general role for the C-terminal tail in chromatin organization and suggest that phosphorylated H2A, gamma-H2AX in higher eukaryotes, acts by recruitment of repair components rather than by destabilizing chromatin structures.

摘要

酵母组蛋白H2A在C末端丝氨酸129处的磷酸化在双链断裂修复中起核心作用。用谷氨酸取代丝氨酸129(hta1-S129E)来模拟H2A磷酸化,这表明磷酸化会破坏染色质结构的稳定性,从而促进修复蛋白的进入。在这里,我们检测了hta1-S129突变体和C末端尾巴缺失菌株中的染色质结构。我们发现hta1-S129E既不影响微型染色体和基因组位点中的核小体定位,也不影响微型染色体的超螺旋。此外,hta1-S129E对通过传统核酸酶消化测量的染色质稳定性没有影响,在体内也不影响紫外线诱导的DNA损伤的DNA可及性以及通过核苷酸切除修复和光解酶进行的修复。同样,C末端尾巴的缺失对核小体定位和稳定性没有影响。这些数据反驳了C末端尾巴在染色质组织中具有普遍作用的观点,并表明在高等真核生物中磷酸化的H2A(γ-H2AX)是通过招募修复成分起作用,而不是通过破坏染色质结构的稳定性来起作用。

相似文献

1
Contribution of the serine 129 of histone H2A to chromatin structure.
Mol Cell Biol. 2007 May;27(10):3589-600. doi: 10.1128/MCB.02077-06. Epub 2007 Mar 12.
2
Saccharomyces cerevisiae histone H2A Ser122 facilitates DNA repair.
Genetics. 2005 Jun;170(2):543-53. doi: 10.1534/genetics.104.038570. Epub 2005 Mar 21.
3
Diverse roles for histone H2A modifications in DNA damage response pathways in yeast.
Genetics. 2007 May;176(1):15-25. doi: 10.1534/genetics.106.063792. Epub 2006 Oct 8.
5
A role for Saccharomyces cerevisiae histone H2A in DNA repair.
Nature. 2000;408(6815):1001-4. doi: 10.1038/35050000.
7
The contribution of the budding yeast histone H2A C-terminal tail to DNA-damage responses.
Biochem Soc Trans. 2007 Dec;35(Pt 6):1519-24. doi: 10.1042/BST0351519.
8
Open, repair and close again: chromatin dynamics and the response to UV-induced DNA damage.
DNA Repair (Amst). 2011 Feb 7;10(2):119-25. doi: 10.1016/j.dnarep.2010.10.010. Epub 2010 Dec 3.
9
Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S. cerevisiae.
Curr Biol. 2005 Apr 12;15(7):656-60. doi: 10.1016/j.cub.2005.02.049.

引用本文的文献

1
Mechanism of auto-inhibition and activation of Mec1 checkpoint kinase.
Nat Struct Mol Biol. 2021 Jan;28(1):50-61. doi: 10.1038/s41594-020-00522-0. Epub 2020 Nov 9.
2
The Structural Determinants behind the Epigenetic Role of Histone Variants.
Genes (Basel). 2015 Jul 23;6(3):685-713. doi: 10.3390/genes6030685.
3
DNA damage and gene transcription: accident or necessity?
Cell Res. 2015 Jul;25(7):769-70. doi: 10.1038/cr.2015.71. Epub 2015 Jun 9.
4
Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions.
Nucleic Acids Res. 2015 Mar 11;43(5):2489-98. doi: 10.1093/nar/gkv061. Epub 2015 Feb 20.
5
Heterochromatin formation via recruitment of DNA repair proteins.
Mol Biol Cell. 2015 Apr 1;26(7):1395-410. doi: 10.1091/mbc.E14-09-1413. Epub 2015 Jan 28.
7
Implication of posttranslational histone modifications in nucleotide excision repair.
Int J Mol Sci. 2012 Sep 28;13(10):12461-86. doi: 10.3390/ijms131012461.
8
Histone H2A variants in nucleosomes and chromatin: more or less stable?
Nucleic Acids Res. 2012 Nov;40(21):10719-41. doi: 10.1093/nar/gks865. Epub 2012 Sep 21.
9
Contributions of histone H3 nucleosome core surface mutations to chromatin structures, silencing and DNA repair.
PLoS One. 2011;6(10):e26210. doi: 10.1371/journal.pone.0026210. Epub 2011 Oct 28.
10
A peek into the complex realm of histone phosphorylation.
Mol Cell Biol. 2011 Dec;31(24):4858-73. doi: 10.1128/MCB.05631-11. Epub 2011 Oct 17.

本文引用的文献

1
Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae.
Nature. 2006 Oct 26;443(7114):1003-7. doi: 10.1038/nature05205.
2
Diverse roles for histone H2A modifications in DNA damage response pathways in yeast.
Genetics. 2007 May;176(1):15-25. doi: 10.1534/genetics.106.063792. Epub 2006 Oct 8.
3
Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks.
J Cell Biol. 2006 Mar 13;172(6):823-34. doi: 10.1083/jcb.200510015. Epub 2006 Mar 6.
4
Regulation of higher-order chromatin structures by nucleosome-remodelling factors.
Curr Opin Genet Dev. 2006 Apr;16(2):151-6. doi: 10.1016/j.gde.2006.02.006. Epub 2006 Feb 28.
5
Patterning chromatin: form and function for H2A.Z variant nucleosomes.
Curr Opin Genet Dev. 2006 Apr;16(2):119-24. doi: 10.1016/j.gde.2006.02.005. Epub 2006 Feb 28.
6
The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites.
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2588-93. doi: 10.1073/pnas.0511160103. Epub 2006 Feb 10.
7
Histone H4-K16 acetylation controls chromatin structure and protein interactions.
Science. 2006 Feb 10;311(5762):844-7. doi: 10.1126/science.1124000.
8
10
gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair.
Mol Cell. 2005 Dec 9;20(5):801-9. doi: 10.1016/j.molcel.2005.10.003. Epub 2005 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验