Jonasson Lisa, Hagmann Patric, Bresson Xavier, Thiran Jean-Philippe, Van Wedeen J
Signal Processing Institute (ITS), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland.
Inf Process Med Imaging. 2005;19:311-20. doi: 10.1007/11505730_26.
We present a method for segmenting white matter tracts from high angular resolution diffusion MR. images by representing the data in a 5 dimensional space of position and orientation. Whereas crossing fiber tracts cannot be separated in 3D position space, they clearly disentangle in 5D position-orientation space. The segmentation is done using a 5D level set method applied to hyper-surfaces evolving in 5D position-orientation space. In this paper we present a methodology for constructing the position-orientation space. We then show how to implement the standard level set method in such a non-Euclidean high dimensional space. The level set theory is basically defined for N-dimensions but there are several practical implementation details to consider, such as mean curvature. Finally, we will show results from a synthetic model and a few preliminary results on real data of a human brain acquired by high angular resolution diffusion MRI.
我们提出了一种从高角分辨率扩散磁共振图像中分割白质纤维束的方法,该方法通过在位置和方向的五维空间中表示数据来实现。在三维位置空间中无法分离交叉的纤维束,但在五维位置 - 方向空间中它们能清晰地解开。分割是使用应用于在五维位置 - 方向空间中演化的超曲面的五维水平集方法完成的。在本文中,我们提出了一种构建位置 - 方向空间的方法。然后我们展示如何在这样一个非欧几里得高维空间中实现标准水平集方法。水平集理论基本上是为N维定义的,但有几个实际实现细节需要考虑,比如平均曲率。最后,我们将展示一个合成模型的结果以及一些关于通过高角分辨率扩散磁共振成像获取的人脑真实数据的初步结果。