Nefedova E L, Levinskikh M A, Sychev V N
Aviakosm Ekolog Med. 2006 Sep-Oct;40(5):45-9.
There are several experimental models of biological life support systems (BLSS) designed to incorporate a chlorella pool. These BLSS can be optimized if populated by algal associations that could take up more functions within the closed cycling system than a single alga species. Introduction of a Spirulina and Chlamydomonas poly-culture with differing in gas exchange and biochemical composition resulted in a tighter closure of linkages within the system. The factors determining the size of a species population in intensive continuous poly-cultures are, first and foremost, pH and suspension flow rate. Experimental testing of this supposition brought us to the conclusion that parametric control of alga productivity and species composition dynamics makes it possible to create a steady intensive poly-culture as part of the LSS for humans. Flow rate and pH can be the parameters for control of the Spirulina and Chlamydomonas populations during continuous cultivation of this poly-culture.
有几种设计用于纳入小球藻池的生物生命支持系统(BLSS)实验模型。如果由藻类联合体构成这些BLSS,使其在封闭循环系统中承担比单一藻类物种更多的功能,那么这些BLSS就能得到优化。引入具有不同气体交换和生化组成的螺旋藻和衣藻混合培养物,导致系统内的联系更加紧密。在密集连续混合培养中,决定物种种群规模的因素首先是pH值和悬浮液流速。对这一假设的实验测试使我们得出结论,对藻类生产力和物种组成动态进行参数控制,有可能创建一个稳定的密集混合培养物,作为人类生命支持系统(LSS)的一部分。在这种混合培养物的连续培养过程中,流速和pH值可以作为控制螺旋藻和衣藻种群的参数。