Suppr超能文献

中值先验断层扫描重建与非线性各向异性扩散滤波相结合。

Median-prior tomography reconstruction combined with nonlinear anisotropic diffusion filtering.

作者信息

Yan Jianhua, Yu Jun

机构信息

Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2007 Apr;24(4):1026-33. doi: 10.1364/josaa.24.001026.

Abstract

Positron emission tomography (PET) is becoming increasingly important in the fields of medicine and biology. Penalized iterative algorithms based on maximum a posteriori (MAP) estimation for image reconstruction in emission tomography place conditions on which types of images are accepted as solutions. The recently introduced median root prior (MRP) favors locally monotonic images. MRP can preserve sharp edges, but a steplike streaking effect and much noise are still observed in the reconstructed image, both of which are undesirable. An MRP tomography reconstruction combined with nonlinear anisotropic diffusion interfiltering is proposed for removing noise and preserving edges. Analysis shows that the proposed algorithm is capable of producing better reconstructed images compared with those reconstructed by conventional maximum-likelihood expectation maximization (MLEM), MAP, and MRP-based algorithms in PET image reconstruction.

摘要

正电子发射断层扫描(PET)在医学和生物学领域正变得越来越重要。基于最大后验(MAP)估计的惩罚迭代算法用于发射断层扫描中的图像重建,它对哪些类型的图像可被接受为解施加了条件。最近引入的中值根先验(MRP)有利于局部单调的图像。MRP可以保留锐利边缘,但在重建图像中仍会观察到阶梯状条纹效应和大量噪声,这两者都是不理想的。提出了一种结合非线性各向异性扩散中间滤波的MRP断层扫描重建方法,用于去除噪声和保留边缘。分析表明,与传统的最大似然期望最大化(MLEM)、MAP和基于MRP的算法在PET图像重建中所重建的图像相比,该算法能够产生更好的重建图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验