Carrique F, Arroyo F J, Shilov V N, Cuquejo J, Jiménez M L, Delgado A V
Department of Applied Physics I, Faculty of Science, University of Málaga, 29071 Málaga, Spain.
J Chem Phys. 2007 Mar 14;126(10):104903. doi: 10.1063/1.2538679.
A long-lasting experience in the electrokinetics of suspensions has shown that the so-called standard model may be partly in error in explaining experimental data. In this model, the stagnant layer is considered nonconducting (Ksigmai=0), and only the diffuse layer contributes to the total surface conductivity (Ksigma=Ksigmad). In the present work, the authors analyze the consequences of assuming a nonzero stagnant layer conductivity on the permittivity of concentrated suspensions. Using a cell model to account for the particle-particle interactions, and a well established ion adsorption isotherm on the inner region of the double layer, the authors find the frequency-dependent electric permittivity of suspensions of spherical particles with volume fractions of solids up to above 40%. It is demonstrated that the addition of Ksigmai significantly increases the contributions of the double layer to the polarization of the suspension: the alpha or concentration polarization at low (kilohertz) frequencies, and the Maxwell-Wagner-O'Konski (associated with conductivity mismatch between particle and medium) one at intermediate (megahertz) frequencies. While checking for the possibility that the results obtained in conditions of Ksigmai not equal 0 could be reproduced assuming Ksigmai=0 and raising Ksigmad to reach identical total Ksigma, it is found that this is approximately possible in the calculation of the permittivity. Interestingly, this does not occur in the case of electrophoretic mobility, where the situations Ksigma=Ksigmad and Ksigma=Ksigmad+Ksigmai (for equal Ksigma) can be distinguished for all frequencies. This points to the importance of using more than one electrokinetic technique to properly evaluate not only the zeta potential but other transport properties of concentrated suspensions, particularly Ksigmai.
长期以来在悬浮液电动学方面的经验表明,所谓的标准模型在解释实验数据时可能存在部分错误。在该模型中,停滞层被视为不导电(Ksigmai = 0),只有扩散层对总表面电导率(Ksigma = Ksigmad)有贡献。在本研究中,作者分析了假设停滞层电导率不为零对浓悬浮液介电常数的影响。通过使用一个细胞模型来考虑颗粒间相互作用,并采用一个在双层内部区域已确立的离子吸附等温线,作者得出了固体体积分数高达40%以上的球形颗粒悬浮液的频率相关介电常数。结果表明,Ksigmai的加入显著增加了双层对悬浮液极化的贡献:在低频(千赫兹)时为α或浓度极化,在中频(兆赫兹)时为麦克斯韦 - 瓦格纳 - 奥康斯基极化(与颗粒和介质之间的电导率不匹配相关)。在检查假设Ksigmai = 0并提高Ksigmad以达到相同的总Ksigma时能否重现Ksigmai不等于0条件下获得的结果的可能性时,发现介电常数计算中这大致是可行的。有趣的是,在电泳迁移率的情况下并非如此,在所有频率下,Ksigma = Ksigmad和Ksigma = Ksigmad + Ksigmai(对于相等的Ksigma)的情况都可以区分。这表明使用多种电动技术不仅正确评估ζ电位,而且评估浓悬浮液的其他传输性质,特别是Ksigmai的重要性。