Suppr超能文献

使用微阵列从福尔马林固定、石蜡包埋的肿瘤组织中进行全基因组范围内的拷贝数、杂合性缺失及基因型的高分辨率检测。

Genome-wide, high-resolution detection of copy number, loss of heterozygosity, and genotypes from formalin-fixed, paraffin-embedded tumor tissue using microarrays.

作者信息

Jacobs Sharoni, Thompson Ella R, Nannya Yasuhito, Yamamoto Go, Pillai Raji, Ogawa Seishi, Bailey Dione K, Campbell Ian G

机构信息

Affymetrix, Inc., Santa Clara, California 95051, USA.

出版信息

Cancer Res. 2007 Mar 15;67(6):2544-51. doi: 10.1158/0008-5472.CAN-06-3597.

Abstract

Formalin-fixed, paraffin-embedded (FFPE) material tends to yield degraded DNA and is thus suboptimal for use in many downstream applications. We describe an integrated analysis of genotype, loss of heterozygosity (LOH), and copy number for DNA derived from FFPE tissues using oligonucleotide microarrays containing over 500K single nucleotide polymorphisms. A prequalifying PCR test predicted the performance of FFPE DNA on the microarrays better than age of FFPE sample. Although genotyping efficiency and reliability were reduced for FFPE DNA when compared with fresh samples, closer examination revealed methods to improve performance at the expense of variable reduction in resolution. Important steps were also identified that enable equivalent copy number and LOH profiles from paired FFPE and fresh frozen tumor samples. In conclusion, we have shown that the Mapping 500K arrays can be used with FFPE-derived samples to produce genotype, copy number, and LOH predictions, and we provide guidelines and suggestions for application of these samples to this integrated system.

摘要

福尔马林固定、石蜡包埋(FFPE)材料往往会产生降解的DNA,因此在许多下游应用中并非最佳选择。我们描述了一种使用包含超过50万个单核苷酸多态性的寡核苷酸微阵列对FFPE组织来源的DNA进行基因型、杂合性缺失(LOH)和拷贝数的综合分析。一项预筛选PCR测试比FFPE样本的年龄更能预测FFPE DNA在微阵列上的表现。虽然与新鲜样本相比,FFPE DNA的基因分型效率和可靠性有所降低,但进一步检查发现了一些方法,可在牺牲分辨率可变降低的情况下提高性能。还确定了一些重要步骤,能够从配对的FFPE和新鲜冷冻肿瘤样本中获得等效的拷贝数和LOH图谱。总之,我们已经表明Mapping 500K阵列可用于FFPE来源的样本,以产生基因型、拷贝数和LOH预测,并且我们为将这些样本应用于这个综合系统提供了指导方针和建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验