Ahmed S M, Al-Zoubi Q, Abo-Zahhad M
Department of Electrical and Electronics Engineering, Faculty of Engineering, Assiut University, Assiut, Egypt.
J Med Eng Technol. 2007 Jan-Feb;31(1):54-61. doi: 10.1080/03091900500518811.
Increasing use of computerized ECG processing systems requires effective electrocardiogram (ECG) data compression techniques which aim to enlarge storage capacity and improve data transmission over phone and internet lines. This paper presents a compression technique for ECG signals using the singular value decomposition (SVD) combined with discrete wavelet transform (DWT). The central idea is to transform the ECG signal to a rectangular matrix, compute the SVD, and then discard small singular values of the matrix. The resulting compressed matrix is wavelet transformed, thresholded and coded to increase the compression ratio. The number of singular values and the threshold level adopted are based on the percentage root mean square difference (PRD) and the compression ratio required. The technique has been tested on ECG signals obtained from MIT-BIH arrhythmia database. The results showed that data reduction with high signal fidelity can thus be achieved with average data compression ratio of 25.2:1 and average PRD of 3.14. Comparison between the obtained results and recently published results show that the proposed technique gives better performance.
计算机化心电图处理系统的使用日益增加,这就需要有效的心电图(ECG)数据压缩技术,其目的是扩大存储容量并改善通过电话和互联网线路的数据传输。本文提出了一种使用奇异值分解(SVD)与离散小波变换(DWT)相结合的ECG信号压缩技术。其核心思想是将ECG信号转换为矩形矩阵,计算奇异值分解,然后丢弃矩阵的小奇异值。对得到的压缩矩阵进行小波变换、阈值处理和编码,以提高压缩率。所采用的奇异值数量和阈值水平基于百分比均方根差(PRD)和所需的压缩率。该技术已在从麻省理工学院 - 贝斯以色列女执事医疗中心(MIT - BIH)心律失常数据库获得的ECG信号上进行了测试。结果表明,由此可以实现高信号保真度的数据缩减,平均数据压缩率为25.2:1,平均PRD为3.14。将所得结果与最近发表的结果进行比较表明,所提出的技术具有更好的性能。