Suppr超能文献

当学习涉及许多线索和事件时,结果最大化和可加性训练也会影响因果学习中的线索竞争。

Outcome maximality and additivity training also influence cue competition in causal learning when learning involves many cues and events.

作者信息

Vandorpe Stefaan, De Houwer Jan, Beckers Tom

机构信息

Department of Psychology, Ghent University, Ghent, Belgium.

出版信息

Q J Exp Psychol (Hove). 2007 Mar;60(3):356-68. doi: 10.1080/17470210601002561.

Abstract

Recent evidence shows that outcome maximality (e.g., De Houwer, Beckers, & Glautier, 2002) and additivity training (e.g., Lovibond, Been, Mitchell, Bouton, & Frohard, 2003) have an influence on cue competition in human causal learning. This evidence supports the idea that cue competition is based on controlled reasoning processes rather than on automatic associative processes. Until now, however, all the evidence for controlled reasoning processes comes from studies with rather simple designs that involved only few cues and events. We conducted two experiments with a complex design involving 24 different cues. The results showed that outcome maximality and additivity training had an influence on cue competition but that this influence was more pronounced for forward cue competition than for retrospective cue competition.

摘要

最近的证据表明,结果最大化(例如,德休尔、贝克斯和格劳蒂尔,2002年)以及可加性训练(例如,洛夫邦德、贝恩、米切尔、布顿和弗罗哈德,2003年)对人类因果学习中的线索竞争有影响。这一证据支持了这样一种观点,即线索竞争基于受控的推理过程,而非自动联想过程。然而,到目前为止,所有关于受控推理过程的证据都来自设计相当简单的研究,这些研究只涉及少量线索和事件。我们进行了两项采用复杂设计的实验,该设计涉及24种不同的线索。结果表明,结果最大化和可加性训练对线索竞争有影响,但这种影响在正向线索竞争中比在回溯性线索竞争中更为明显。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验