van den Berg Hugo A, Rand David A
Warwick Systems Biology Centre, Mathematics Institute, University of Warwick, Coventry, UK.
Immunol Rev. 2007 Apr;216:81-92. doi: 10.1111/j.1600-065X.2006.00491.x.
We review recent advances toward a comprehensive mathematical theory of T-cell immunity. A key insight is that the efficacy of the T-cell response is best analyzed in terms of T-cell receptor (TCR) avidity and the distribution of this avidity across the TCR repertoire (the 'avidity spectrum'). Modification of this avidity spectrum by a wide range of tuning and tolerance mechanisms allows the system to adapt cross-reactivity and specificity to the challenge at hand while avoiding inappropriate responses against non-pathogenic cells and tissues. Theoretical models relate molecular kinetic parameters and cellular properties to systemic level statistics such as avidity spectra. Such bridge equations are crucial for rational clinical manipulation of T cells at the molecular level.
我们回顾了在构建全面的T细胞免疫数学理论方面的最新进展。一个关键的见解是,最好根据T细胞受体(TCR)亲和力以及这种亲和力在TCR库中的分布(“亲和力谱”)来分析T细胞反应的效力。通过多种调节和耐受机制对这种亲和力谱进行修改,可使系统调整交叉反应性和特异性以应对当前的挑战,同时避免对非致病细胞和组织产生不适当的反应。理论模型将分子动力学参数和细胞特性与诸如亲和力谱等系统水平的统计数据联系起来。此类桥梁方程对于在分子水平上合理临床操控T细胞至关重要。